Skip to main content
Log in

Analytical solutions for thermal vibration of nanobeams with elastic boundary conditions

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

A nonlocal Euler beam model with second-order gradient of stress taken into consideration is used to study the thermal vibration of nanobeams with elastic boundary. An analytical solution is proposed to investigate the free vibration of nonlocal Euler beams subjected to axial thermal stress. The effects of the nonlocal parameter, thermal stress and stiffness of boundary constraint on the vibration behaviors of nanobeams are revealed. The results show that natural frequencies including the thermal stress are lower than those without the thermal stress when temperature rises. The boundary-constrained springs have significant effects on the vibration of nanobeams. In addition, numerical simulations also indicate the importance of small-scale effect on the vibration of nanobeams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58.

    Article  Google Scholar 

  2. T.W. Ebbesen, Carbon Nanotubes: Preparation and Properties, CRC Press, New York, 1996.

    Google Scholar 

  3. P. Kim, C.M. Lieber, Nanotube nanotweezers, Science 286 (1999) 2148–2150.

    Article  Google Scholar 

  4. E.V. Dirote, Trends in Nanotechnology Research, Nova Science Publishers, New York, 2004.

    Google Scholar 

  5. L.F. Wang, H.Y. Hu, Flexural wave propagation in single-walled carbon nanotubes, Phys. Rev. B 71 (2005) 195412.

    Article  Google Scholar 

  6. L.F. Wang, W.L. Guo, H.Y. Hu, Group velocity of wave propagation in carbon nanotubes, Proc. R. Soc. A 464 (2008) 1423–1438.

    Article  MathSciNet  MATH  Google Scholar 

  7. C.W. Lim, Y. Yang, Wave propagation in carbon nanotubes: nonlocal elasticity induced stiffness and velocity enhancement effects, J. Mech. Mater. Struct. 5 (3) (2010) 459–476.

    Article  Google Scholar 

  8. C.M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, J. Sound Vib. 294 (2006) 1060–1072.

    Article  Google Scholar 

  9. J. Yoon, C.Q. Ru, A. Mioduchowski, Vibration of an embedded multiwall carbon nanotube, Compos. Sci. Technol. 63 (2003) 1533–1542.

    Article  Google Scholar 

  10. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Metall. Mater. 42 (2) (1994) 475–487.

    Google Scholar 

  11. W.J. Poole, M.F. Ashby, N.A. Fleck, Micro-hardness of annealed and work hardened copper polycrystals, Scr. Mater. 34 (4) (1996) 559–564.

    Article  Google Scholar 

  12. J.S. Stolken, A.G. Evans, A microbend test method for measuring the plasticity length scale, Acta Mater. 46 (1998) 5109–5115.

    Article  Google Scholar 

  13. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids 51 (8) (2003) 1477–1508.

    Article  MATH  Google Scholar 

  14. Y.J. Liang, Q. Han, Prediction of the nonlocal scaling parameter for graphene sheet, Eur. J. Mech. A Solids 45 (2014) 153–160.

    Article  MathSciNet  Google Scholar 

  15. R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal. 11 (1) (1962) 415–448.

    Article  MathSciNet  Google Scholar 

  16. R.A. Toupin, Theories of elasticity with couple stress, Arch. Ration. Mech. Anal. 17 (2) (1963) 85–112.

    MathSciNet  Google Scholar 

  17. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct. 39 (2002) 2731–2743.

    Article  MATH  Google Scholar 

  18. R.D. Mindlin, N.N. Eshel, On first strain-gradient theories in linear elasticity, Int. J. Solids Struct. 4 (1) (1968) 109–124.

    Article  MATH  Google Scholar 

  19. S. Papargyri-Beskou, K.G. Tsepoura, D. Polyzos, D.E. Beskos, Bending and stability analysis of gradient elastic beams, Int. J. Solids Struct. 40 (2003) 385–400.

    Article  MATH  Google Scholar 

  20. W. Xu, L.F. Wang, J.N. Jiang, Strain gradient finite element analysis on the vibration of double-layered graphene sheets, Int. J. Comput. Methods 13 (3) (2016) 1650011.

    Article  MathSciNet  MATH  Google Scholar 

  21. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (9) (1983) 4703–4710.

    Article  Google Scholar 

  22. Y.Q. Zhang, G.R. Liu, J.S. Wang, Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression, Phys. Rev. B 70 (2004) 205430.

    Article  Google Scholar 

  23. J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci. 45 (2007) 288–307.

    Article  MATH  Google Scholar 

  24. J.N. Reddy, S.D. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, J. Appl. Phys. 103 (2008) 023511.

    Article  Google Scholar 

  25. H. Babaei, A.R. Shahidi, Free vibration analysis of quadrilateral nanoplates based on nonlocal continuum models using the Galerkin method: the effects of small scale, Meccanica 48 (2013) 971–982.

    Article  MathSciNet  MATH  Google Scholar 

  26. Y.J. Liang, Q. Han, Prediction of the nonlocal scaling parameter for graphene sheet, Eur. J. Mech. A Solids 45 (2014) 153–160.

    Article  MathSciNet  Google Scholar 

  27. Y.Q. Zhang, X. Liu, G.R. Liu, Thermal effect on transverse vibrations of double-walled carbon nanotubes, Nanotechnology 18 (2007) 445701.

    Article  Google Scholar 

  28. A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay, L. Boumia, The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory, J. Phys. D: Appl. Phys. 41 (2008) 225404.

    Article  Google Scholar 

  29. T. Murmu, S.C. Pradhan, Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory, Comput. Mater. Sci. 46 (4) (2009) 854–859.

    Article  Google Scholar 

  30. F. Ebrahimi, E. Salari, Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments, Compos. Struct. 128 (2015) 363–380.

    Article  Google Scholar 

  31. W.L. Li, Free vibration of beams with general boundary conditions, J. Sound Vib. 237 (2000) 709–725.

    Article  Google Scholar 

  32. W.L. Li, M.W. Bonilha, J. Xiao, Vibrations of two beams elastically coupled together at an arbitrary angle, Acta Mech. Solida Sin. 25 (1) (2012) 61–71.

    Google Scholar 

  33. G.Y. Jin, T.G. Ye, Z. Su, A Uniform Accurate Solution for Laminated Beams, Plates and Shells with General Boundary Conditions, Science Press, Beijing, 2015.

    MATH  Google Scholar 

  34. K. Kiani, A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect, Int. J. Mech. Sci. 52 (2010) 1343–1356.

    Article  Google Scholar 

  35. M.A.D. Rosa, M. Lippiello, Nonlocal frequency analysis of embedded single-walled carbon nanotube using the differential quadrature method, Composites Part B 84 (2016) 41–51.

    Article  Google Scholar 

  36. L.L. Ke, Y.S. Wang, Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory, Smart Mater. Struct. 21 (2012) 025018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Wang, L. Analytical solutions for thermal vibration of nanobeams with elastic boundary conditions. Acta Mech. Solida Sin. 30, 474–483 (2017). https://doi.org/10.1016/j.camss.2017.08.001

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.camss.2017.08.001

Keywords

Navigation