Skip to main content
Log in

Band structures of elastic SH waves in nanoscale multi-layered functionally graded phononic crystals with/without nonlocal interface imperfections by using a local RBF collocation method

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

A meshless radial basis function (RBF) collocation method based on the Eringen nonlocal elasticity theory is developed to calculate the band structures of ternary and quaternary nanoscale multi-layered phononic crystals (PNCs) with functionally graded (FG) interlayers. Detailed calculations are performed for anti-plane transverse waves propagating in such PNCs. The influences of FG and homogeneous interlayers, component number, nonlocal interface imperfections and nanoscale size on cut-off frequency and band structures are investigated in detail. Numerical results show that these factors have significant effects on band structures at the macroscopic and microscopic scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Maldovan, E.L. Thomas, Periodic Materials and Interference Lithography: for Photonics, Phononics, and Mechanics, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2009.

    Google Scholar 

  2. G. Saini, T. Pezeril, D.H. Torchinsky, J. Yoon, E. Thomas, K. Nelson, Pulsed laser characterization of multicomponent polymer acoustic and mechanical properties in the sub-GHz regime, J. Mater. Res. 22 (2007) 719–723.

    Article  Google Scholar 

  3. Z.H. Qian, F. Jin, Z.K. Wang, K.K. Kishimoto, Dispersion relations for SH-wave propagation in periodic piezoelectric composite layered structures, Int. J. Eng. Sci. 42 (2004) 673–689.

    Article  Google Scholar 

  4. Y. Pang, J.X. Liu, Y.S. Wang, D.N. Fang, Wave propagation in piezoelectric/piezomagnetic layered periodic composites, Acta Mech. Solida Sin. 21 (2008) 483–490.

    Article  Google Scholar 

  5. M. Lan, P.J. Wei, Laminated piezoelectric phononic crystal with imperfect interfaces, J. Appl. Phys. 111 (2012) 013505-1–013505-9.

    Article  Google Scholar 

  6. J. Woo, S. Meguid, Nonlinear analysis of functionally graded plates and shallow shells, Int. J. Solids Struct. 38 (2001) 7409–7421.

    Article  MATH  Google Scholar 

  7. H.S. Shen, Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press Taylor & Francis Group, USA, 2009.

    Book  Google Scholar 

  8. L. Wang, S.I. Rokhlin, Recursive geometric integrators for wave propagation in a functionally graded multilayered elastic medium, J. Mech. Phys. Solids 52 (2004) 2473–2506.

    Article  MathSciNet  MATH  Google Scholar 

  9. M.L. Wu, L.Y. Wu, W.P. Yang, L.W. Chen, Elastic wave band gaps of one-dimensional phononic crystals with functionally graded materials, Smart Mater. Struct. 18 (2009) 115013–115021.

    Article  Google Scholar 

  10. M.V. Golub, S.I. Fomenko, T.Q. Bui, C. Zhang, Y.S. Wang, Transmission and band gaps of elastic SH waves in functionally graded periodic laminates, Int. J. Solids Struct. 49 (2012) 344–354.

    Article  Google Scholar 

  11. X. Su, Y. Gao, Y. Zhou, The influence of material properties on the elastic band structures of one-dimensional functionally graded phononic crystals, J. Appl. Phys. 112 (2012) 123503.

    Article  Google Scholar 

  12. S.I. Fomenko, M.V. Golub, C. Zhang, T.Q. Bui, Y.S. Wang, In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals, Int. J. Solids Struct. 51 (2014) 2491–2503.

    Article  Google Scholar 

  13. X. Guo, P.J. Wei, M. Lan, L. Li, Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers, Ultrasonics 70 (2016) 158–171.

    Article  Google Scholar 

  14. M. Zheng, P.J. We, Band gaps of elastic waves in 1D phononic crystals with imperfect interfaces, Int. J. Mater. Metall. Mater. 16 (2009) 608–614.

    Article  Google Scholar 

  15. X.Y. Zhu, S. Zhong, D.Q. Sun, A.K. Ye, F.W. Deng, Investigation of phononic band gap structures considering interface effects, Physica B 450 (2014) 121–127.

    Article  Google Scholar 

  16. X. Guo, P.J. Wei, L. Li, Dispersion relations of elastic waves in one-dimensional piezoelectric phononic crystal with mechanically and dielectrically imperfect interfaces, Mech. Mater. 93 (2016) 168–183.

    Article  Google Scholar 

  17. N. Gomopoulos, D. Maschke, C.Y. Koh, E.L. Thomas, W. Tremel, H.J. Butt, G. Fytas, One-dimensional hypersonic phononic crystals, Nano Lett. 10 (2010) 980–984.

    Article  Google Scholar 

  18. L. Dhar, J.A. Rogers, High frequency one-dimensional phononic crystal characterized with a picoseconds transient grating photoacoustic technique, Appl. Phys. Lett. 77 (2000) 1402–1404.

    Article  Google Scholar 

  19. A.N. Cleland, D.R. Schmidt, C.S. Yung, Thermal conductance of nanostructured phononic crystals, Phys. Rev. B 64 (2001) 607–611.

    Article  Google Scholar 

  20. L.C. Parsons, G.T. Andrews, Observation of hypersonic crystal effects in porous silicon superlattices, Appl. Phys. Lett. 95 (2009) 1–4.

    Article  Google Scholar 

  21. S.P. Hepplestone, G.P. Srivastava, Hypersonic modes in nanophononic semiconductors, Phys. Rev. Lett. 101 (2008) 5938–5940.

    Article  Google Scholar 

  22. R.N. Ramprasad, Scalability of phononic crystal heterostructures, Appl. Phys. Lett. 87 (2005) 111101-111101-3.

    Article  Google Scholar 

  23. A.L. Chen, Y.S. Wang, L.L. Ke, Y.F. Guo, Z.D. Wang, Wave propagation in nanoscaled periodic layered structures, J. Comput. Theor. Nanosci. 10 (2013) 2427–2437.

    Article  Google Scholar 

  24. N. Zhen, Y.S. Wang, C.Z. Zhang, Surface/interface effect on band structures of nanosized phononic crystals, Mech. Res. Commun. 46 (2012) 81–89.

    Article  Google Scholar 

  25. C. Goffaux, J.P. Vigneron, Theoretical study of a tunable phononic band gap system, Phys. Rev. B 64 (2001) 075118.

    Article  Google Scholar 

  26. M.S. Kushwaha, Band gap engineering in phononic crystals, Recent Res. Dev. Appl. Phys. 2 (1999) 743–855.

    Google Scholar 

  27. M. Kafesaki, E.N. Economou, Multiple-scattering theory for three-dimensional periodic acoustic composites, Phys. Rev. B 60 (1999) 11993.

    Article  Google Scholar 

  28. J.H. Sun, T.T. Wu, Propagation of acoustic waves in phononic crystal plates and waveguides using a finite-difference time domain method, Phys. Rev. B 76 (2007) 104304.

    Article  Google Scholar 

  29. J.Y. Yeh, L.W. Chen, Wave propagations of a periodic sandwich beam by FEM and the transfer matrix method, Compos. Struct. 73 (2006) 53–60.

    Article  Google Scholar 

  30. Z.Z. Yan, Y.S. Wang, Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals, Phys. Rev. B 74 (2006) 224303.

    Article  Google Scholar 

  31. W. Chen, Z.J. Fu, C.S. Chen, Recent Advances in Radial Basis Function Collocation Methods, Springer Publications, , 2013.

    MATH  Google Scholar 

  32. Z.Z. Yan, C.Q. Wei, H. Zheng, C.Z. Zhang, Phononic band structures and stability analysis using radial basis function method with consideration of different interface models, Physica B 489 (2016) 1–11.

    Article  Google Scholar 

  33. A.C. Eringen, Nonlocal continuum mechanics based on distributions, Int. J. Eng. Sci. 44 (2006) 141–147.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhong Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Wei, C. & Zhang, C. Band structures of elastic SH waves in nanoscale multi-layered functionally graded phononic crystals with/without nonlocal interface imperfections by using a local RBF collocation method. Acta Mech. Solida Sin. 30, 390–403 (2017). https://doi.org/10.1016/j.camss.2017.07.012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.camss.2017.07.012

Keywords

Navigation