Advertisement

Acta Mechanica Solida Sinica

, Volume 30, Issue 4, pp 369–373 | Cite as

A mechanical model for the adhesive contact with local sliding induced by a tangential force

  • Gan-Yun Huang
  • Ji-Feng Yan
Article
  • 3 Downloads

Abstract

Adhesion has been demonstrated to play an important role in contact and friction between objects at small scales. While various models have been established for adhesive contact under normal forces, studies on the adhesive contact under tangential force have been far fewer, which if any, are mostly confined to the non-slipping situations. In the present work, a model has been proposed for adhesive contact with local sliding under tangential forces. Herein, the onset of local sliding in adhesive contact has been addressed by assuming the nucleation of dislocations. By analogy with the emission of dislocations at a crack tip, the critical tangential force for the onset of sliding has been determined, and its effect on the evolution of contact size has also been studied. Comparison with relevant experiments has verified the validity of the present model.

Keywords

Adhesive contact Tangential force Local sliding Dislocation Contact size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Yoshizawa, Y.-L. Che, J. Israelachvili, Fundamental mechanisms of interfacial friction. 1. relation between adhesion and friction, J. Phys. Chem 97 (1993) 4128–4140.CrossRefGoogle Scholar
  2. 2.
    R.W. Carpick, N. Agraït, D.F. Ogletree, M. Salmeron, Variation of the interfacial shear strength and adhesion of a nanometer-sized contact, Langmuir 12 (1996) 3334–3340.CrossRefGoogle Scholar
  3. 3.
    P. Chen, J. Peng, Y. Zhao, F. Gao, Prediction of the adhesive behavior of bio-inspired functionally graded materials against rough surfaces, AIP Adv. 4 (2014) 067143.CrossRefGoogle Scholar
  4. 4.
    K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids, Proc. R. Soc. Lond. A 324 (1971) 301–313.CrossRefGoogle Scholar
  5. 5.
    B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformations on the adhesion of particles, J. Colloid Interface Sci 53 (1975) 314–325.CrossRefGoogle Scholar
  6. 6.
    D. Maugis, Adhesion of spheres: The JKR-DMT transition using a Dugdale model, J. Colloid Interface Sci 150 (1992) 243–269.CrossRefGoogle Scholar
  7. 7.
    J.A. Greenwood, K.L. Johnson, An alternative to the Maugis model of adhesion between elastic spheres, J. Phys. D: Appl. Phys 31 (1998) 3279–3290.CrossRefGoogle Scholar
  8. 8.
    E. Barthel, G. Haiat, Approximate model for the adhesive contact of viscoelastic spheres, Langmuir 18 (2002) 9362–9370.CrossRefGoogle Scholar
  9. 9.
    F. Jin, W. Zhang, S. Zhang, X. Guo, Adhesion between elastic cylinders based on the double-Hertz model, Int. J. Solids Struct. 51 (2014) 2706–2712.CrossRefGoogle Scholar
  10. 10.
    A.R. Savkoor, G.A.D. Briggs, The effect of tangential force on the contact of elastic solids in adhesion, Proc. R. Soc. Lond. A 356 (1977) 103–114.CrossRefGoogle Scholar
  11. 11.
    C. Thornton, Interparticle sliding in the presence of adhesion, J. Phys. D: Appl. Phys. 24 (1991) 1942–1946.CrossRefGoogle Scholar
  12. 12.
    K.L. Johnson, Adhesion and friction between a smooth elastic spherical asperity and a plane surface, Proc. R. Soc. Lond. A 453 (1997) 163–179.CrossRefGoogle Scholar
  13. 13.
    S. Chen, T. Wang, General solution to two-dimensional nonslipping JKR model with a pulling force in an arbitrary direction, J. Colloid Interface Sci 302 (2006) 363–369.CrossRefGoogle Scholar
  14. 14.
    J.F. Waters, P.R. Guduru, Mode-mixity-dependent adhesive contact of a sphere on a plane surface, Proc. R. Soc. A. 466 (2010) 1303–1325.CrossRefGoogle Scholar
  15. 15.
    P. Chen, S. Chen, Y. Yao, Nonslipping contact between a mismatch film and a finite-thickness graded substrate, J. Appl. Mech.-Trans. ASME 83 (2016) 021007.Google Scholar
  16. 16.
    M. Ciavarella, , Int. J. Solids Struct 35 (1998) 2349–2362.MathSciNetCrossRefGoogle Scholar
  17. 17.
    V. Aleshin, K. Van Den Abeel, Hertz–Mindlin problem for arbitrary oblique 2D loading: general solution by memory diagrams, J. Mech. Phys. Solids 60 (2012) 14–36.MathSciNetCrossRefGoogle Scholar
  18. 18.
    P.P. Garland, R.J. Rogers, An analytical solution for shear stress distributions during oblique elastic impact of similar spheres, J. Comput. Nonlinear Dyn 3 (2008) 011002.CrossRefGoogle Scholar
  19. 19.
    C. Cattaneo, Sul contatto di due corpi elastici: distribuzione locale degli sforzi, Accad. Lincei Rend. 27 (1938) 342–348.zbMATHGoogle Scholar
  20. 20.
    R.D. Mindlin, Compliance of elastic bodies in contact, J. Appl. Mech. 16 (1949) 259–268.MathSciNetzbMATHGoogle Scholar
  21. 21.
    M. Enachescu, R.J.A. van den Oetelaar, R.W. Carpick, D.F. Ogletree, C.F.J. Flipse, M. Salmeron, Observation of proportionality between friction and contact area at the nanometer scale, Tribol. Lett 7 (1999) 73–78.CrossRefGoogle Scholar
  22. 22.
    O. Ben-David, G. Cohen, J. Fineberg, The dynamics of the onset of frictional slip, Science 330 (2010) 211–214.CrossRefGoogle Scholar
  23. 23.
    G.G. Adams, Stick, partial slip and sliding in the plane strain micro contact of two elastic bodies, R. Soc. Open Sci 1 (2014) 140363.CrossRefGoogle Scholar
  24. 24.
    S. Maegawa, A. Suzuki, K. Nakano, Precursors of global slip in a longitudinal line contact under non-uniform normal loading, Tribol. Lett 38 (2010) 313–323.CrossRefGoogle Scholar
  25. 25.
    T. Baumberger, C. Caroli, O. Ronsin, Self-healing slip pulses along a gel/glass interface, Phys. Rev. Lett 88 (2002) 075509.CrossRefGoogle Scholar
  26. 26.
    A.P. Merkle, L.D. Marks, Friction in full view, Appl. Phys. Lett. 90 (2007) 064101.CrossRefGoogle Scholar
  27. 27.
    M.H. Cho, S.J. Kim, D.-S. Lim, H. Jang, Atomic scale stick-slip caused by dislocation nucleation and propagation during scratching of a Cu substrate with a nanoindenter: a molecular dynamics simulation, Wear 259 (2005) 1392–1399.CrossRefGoogle Scholar
  28. 28.
    J.R. Rice, Dislocation nucleation from a crack tip: an analysis based on Peierls concept, J. Phys. Mech. Solids 40 (1992) 239–272.CrossRefGoogle Scholar
  29. 29.
    Y. Gao, A Peierls perspective on mechanisms of atomic friction, J. Mech. Phys. Solids 58 (2010) 2023–2032.CrossRefGoogle Scholar
  30. 30.
    S. Maier, E. Gnecco, A. Baratoff, R. Bennewitz, E. Meyer, Atomic-scale friction modulated by a buried interface: combined atomic and friction force microscopy experiments, Phys. Rev. B 78 (2008) 045432.CrossRefGoogle Scholar
  31. 31.
    A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer, Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction, Phys. Rev. Lett 92 (2004) 134301.CrossRefGoogle Scholar
  32. 32.
    G.Y. Huang, B. Svendsen, Model of mismatched contact for dislocation generation during coalescence of grains, Phil. Mag. Lett 93 (2013) 246–253.CrossRefGoogle Scholar
  33. 33.
    J.A. Hurtado, K.-S. Kim, Scale effects in friction of single-asperity contacts. I. From concurrent slip to single-dislocation-assisted slip, Proc. R. Soc. Lond. A 455 (1999) 3363–3384.CrossRefGoogle Scholar
  34. 34.
    J.A. Hurtado, K.-S. Kim, Scale effects in friction of single-asperity contacts. II. Multiple-dislocation-cooperated slip, Proc. R. Soc. Lond. A 455 (1999) 3385–3400.CrossRefGoogle Scholar
  35. 35.
    S. Ecke, H.J. Butt, Friction between individual microcontacts, J. Colloid Interface Sci 244 (2001) 432–435.CrossRefGoogle Scholar
  36. 36.
    D.S. Grierson, E.E. Flater, R.W. Carpick, Accounting for the JKR– DMT transition in adhesion and friction measurements with atomic force microscopy, J. Adhesion Sci. Technol 19 (2005) 291–311.CrossRefGoogle Scholar
  37. 37.
    J.F. Waters, J. Kalow, H. Gao, P.R. Guduru, Axisymmetric adhesive contact under equibiaxial stretching, J. Adhesion 88 (2012) 134–144.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.Department of Mechanics, School of Mechanical EngineeringTianjin UniversityTianjinChina

Personalised recommendations