Advertisement

Acta Mechanica Solida Sinica

, Volume 30, Issue 4, pp 345–353 | Cite as

Quantitative study on interactions between interfacial misfit dislocation networks and matrix dislocations in Ni-based single crystal superalloys

  • Jun Xiong
  • Yaxin Zhu
  • Zhenhuan Li
  • Minsheng Huang
Article

Abstract

The interactions between the moving dislocation within matrix channel and the interfacial misfit dislocation networks on the two-phase interfaces in Ni-based single crystal super-alloys are studied carefully via atomic modeling, with special focus on the factors influencing the critical bowing stress of moving dislocations in the matrix channel. The results show that the moving matrix dislocation type and its position with respect to the interfacial misfit dislocation segments have considerable influences on the interactions. If the moving matrix dislocation is pure screw, it reacts with the interfacial misfit dislocation segments toward dislocation linear energy reduction, which decreases the critical bowing stress of screw dislocation due to dislocation linear energy release during the dislocation reactions. If the moving matrix dislocation is of 60° -mixed type, it is obstructed by the interaction between the mixed matrix dislocations and the misfit interfacial dislocation segments. As a result, the critical bowing stress increases significantly because extra interactive energy needs to be overcome. These two different effects on the critical bowing stress become increasingly significant when the moving matrix dislocation is very close to the interfacial misfit dislocation segments. In addition, the matrix channel width also has a significant influence on the critical bowing stress, i.e. the narrower the matrix channel is, the higher the critical bowing stress is. The classical Orowan formula is modified to predict these effects on the critical bowing stress of moving matrix dislocation, which is in good agreement with the computational results.

Keywords

Dislocation interaction Misfit dislocation networks Molecular dynamics Matrix dislocation Ni-based single crystal superalloys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Yu, S. Tian, M. Wang, S. Zhang, X. Lu, S. Cui, Creep behaviors and effect factors of single crystal nickel-base superalloys, Mater. Sci. Eng. A. 499 (1–2) (2009) 352–359.Google Scholar
  2. 2.
    R.C. Reed, The superalloys: fundamentals and applications, Cambridge University Press, UK, 2008.Google Scholar
  3. 3.
    T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction, Acta Materialia. 52 (12) (2004) 3737–3744.CrossRefGoogle Scholar
  4. 4.
    T. He, W. Xiao, X. Li, Y. Zhang, Interaction between a screw dislocation and a circular nano-inhomogeneity with a bimaterial interface, Acta Mech. Solida Sin. 30 (1) (2017) 39–50.CrossRefGoogle Scholar
  5. 5.
    Y. Ro, Y. Koizumi, H. Harada, High temperature tensile properties of a series of nickel-base superalloys on a γ/γ′tie line, Mater. Sci. Eng. A. 223 (1) (1997) 59–63.CrossRefGoogle Scholar
  6. 6.
    H. Gabrisch, D. Mukherji, R.P. Wahi, Deformation-induced dislocation networks at the γ-γ′ interfaces in the single-crystal superalloy SC16: A mechanism-based analysis, Philos. Mag. A. 74 (1) (1996) 229–249.CrossRefGoogle Scholar
  7. 7.
    C. Mayr, G. Eggeler, A. Dlouhy, Analysis of dislocation structures after double shear creep deformation of CMSX6-superalloy single crystals at temperatures above 1000 °C, Mater. Sci. Eng. A. 207 (1) (1996) 51–63.CrossRefGoogle Scholar
  8. 8.
    D. Bettge, W. Oesterle, ‘Cube slip’ in near-[111]oriented specimens of a single-crystal nickel-base superalloy, Scripta Materialia. 40 (4) (1999) 389–395.CrossRefGoogle Scholar
  9. 9.
    T. Link, A. Epishin, U. Brückner, P. Portella, Increase of misfit during creep of superalloys and its correlation with deformation, Acta Materialia. 48 (8) (2000) 1981–1994.CrossRefGoogle Scholar
  10. 10.
    C.M.F. Rae, R.C. Reed, Primary creep in single crystal superalloys: origins, mechanisms and effects, Acta Mater. 55 (3) (2007) 1067–1081.CrossRefGoogle Scholar
  11. 11.
    V. Sass, M. Feller-Kniepmeier, Orientation dependence of dislocation structures and deformation mechanisms in creep deformed CMSX-4 single crystals, Mater. Sci. Eng. A. 245 (1) (1998) 19–28.CrossRefGoogle Scholar
  12. 12.
    J.X. Zhang, T. Murakumo, H. Harada, Y. Koizumi, Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138, Scripta Materialia. 48 (3) (2003) 287–293.CrossRefGoogle Scholar
  13. 13.
    J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, S. Masaki Jr., Interfacial dislocation networks strengthening a fourth-generation single-crystal TMS-138 superalloy, Metall. Mater. Trans. A: Physical Metallurgy and Materials Science 33 (12) (2002) 3741–3746.CrossRefGoogle Scholar
  14. 14.
    J.X. Zhang, J.C. Wang, H. Harada, Y. Koizumi, The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep, Acta Materialia. 53 (17) (2005) 4623–4633.CrossRefGoogle Scholar
  15. 15.
    H. Zhou, Y. Ro, H. Harada, Y. Aoki, M. Arai, Deformation microstructures after low-cycle fatigue in a fourth-generation Ni-base SC superalloy TMS-138, Mater. Sci. Eng. A. 381 (1–2) (2004) 20–27.CrossRefGoogle Scholar
  16. 16.
    S. Tian, H. Zhou, J. Zhang, H. Yang, Y. Xu, Z. Hu, Formation and role of dislocation networks during high temperature creep of a single crystal nickel–base superalloy, Mater. Sci. Eng. A. 279 (1–2) (2000) 160–165.Google Scholar
  17. 17.
    G. Eggele, A. Dlouhy, On the formation of 010-dislocations in the γ′ -phase of superalloy single crystals during high temperature low stress creep, Acta Materialia. 45 (10) (1997) 4251–4262.CrossRefGoogle Scholar
  18. 18.
    M. Huang, Z. Li, The key role of dislocation dissociation in the plastic behaviour of single crystal nickel-based superalloy with low stacking fault energy: three-dimensional discrete dislocation dynamics modelling, J. Mech. Phys. Solids 61 (12) (2013) 2454–2472.CrossRefGoogle Scholar
  19. 19.
    M. Huang, L. Zhao, J. Tong, Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys, Int. J. Plast. 28 (1) (2012) 141–158.CrossRefGoogle Scholar
  20. 20.
    K. Yashiro, M. Konishi, Y. Tomita, Discrete dislocation dynamics study on interaction between prismatic dislocation loop and interfacial network dislocations, Comput. Mater. Sci. 43 (3) (2008) 481–488.CrossRefGoogle Scholar
  21. 21.
    K. Yashiro, F. Kurose, Y. Nakashima, K. Kubo, Y. Tomita, H.M. Zbib, Discrete dislocation dynamics simulation of cutting of γ′ precipitate and interfacial dislocation network in Ni-based superalloys, Int. J. Plast. 22 (4) (2006) 713–723.CrossRefzbMATHGoogle Scholar
  22. 22.
    B. Liu, D. Raabe, F. Roters, A. Arsenlis, Interfacial dislocation motion and interactions in single-crystal superalloys, Acta Materialia. 79 (2014) 216–233.CrossRefGoogle Scholar
  23. 23.
    W.-P. Wu, Y.-F. Guo, Y.-S. Wang, Influence of stress state on the evolution of misfit dislocation networks in a Ni-based single crystal superalloy, Philos. Mag. 92 (12) (2012) 1456–1468.CrossRefGoogle Scholar
  24. 24.
    Y.-L. Li, W.-P. Wu, Z.-G. Ruan, Molecular dynamics simulation of the evolution of interfacial dislocation network and stress distribution of a Ni-based single-crystal superalloy, Acta Metallurgica Sinica (English Letters). 29 (7) (2016) 689–696.CrossRefGoogle Scholar
  25. 25.
    K. Yashiro, M. Naito, Y. Tomita, Molecular dynamics simulation of dislocation nucleation and motion at γ/γ′ interface in Ni-based superalloy, Int. J. Mech. Sci. 44 (9) (2002) 1845–1860.CrossRefzbMATHGoogle Scholar
  26. 26.
    Y. Zhu, Z. Li, M. Huang, Atomistic modeling of the interaction between matrix dislocation and interfacial misfit dislocation networks in Ni-based single crystal superalloy, Comput. Mater. Sci. 70 (2013) 178–186.CrossRefGoogle Scholar
  27. 27.
    A. Prakash, J. Guénolé, J. Wang, J. Müller, E. Spiecker, M.J. Mills, et al., Atom probe informed simulations of dislocation–precipitate interactions reveal the importance of local interface curvature, Acta Mater. 92 (2015) 33–45.CrossRefGoogle Scholar
  28. 28.
    T.M. Pollock, A.S. Argon, Creep resistance of CMSX-3 nickel base superalloy single crystals, Acta Metallurgica et Materialia. 40 (1) (1992) 1–30.CrossRefGoogle Scholar
  29. 29.
    S. Gao, M. Fivel, A. Ma, A. Hartmaier, Influence of misfit stresses on dislocation glide in single crystal superalloys: a three-dimensional discrete dislocation dynamics study, J. Mech. Phys. Solids. 76 (2015) 276–290.MathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Yang, M. Huang, Z. Li, The influence of vacancies diffusion-induced dislocation climb on the creep and plasticity behaviors of nickel-based single crystal superalloy, Comput. Mater. Sci. 99 (2015) 348–360.CrossRefGoogle Scholar
  31. 31.
    H. Yang, Z. Li, M. Huang, Modeling dislocation cutting the precipitate in nickel-based single crystal superalloy via the discrete dislocation dynamics with SISF dissociation scheme, Comput. Mater. Sci. 75 (2013) 52–59.CrossRefGoogle Scholar
  32. 32.
    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1–19.CrossRefzbMATHGoogle Scholar
  33. 33.
    S. Alexander, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng. 18 (1) (2010) 015012.CrossRefGoogle Scholar
  34. 34.
    J.E. Angelo, N.R. Moody, M.I. Baskes, Trapping of hydrogen to lattice defects in nickel, Modell. Simul. Mater. Sci. Eng. 3 (3) (1995) 289.CrossRefGoogle Scholar
  35. 35.
    Y. Zhu, Z. Li, M. Huang, The size effect and plastic deformation mechanism transition in the nanolayered polycrystalline metallic multilayers, J. Appl. Phys. 115 (23) (2014) 233508.CrossRefGoogle Scholar
  36. 36.
    Y. Zhu, Z. Li, M. Huang, H. Fan, Study on interactions of an edge dislocation with vacancy-H complex by atomistic modelling, Int. J. Plast. 92 (2017) 31–44.CrossRefGoogle Scholar
  37. 37.
    B. Fedelich, A microstructural model for the monotonic and the cyclic mechanical behavior of single crystals of superalloys at high temperatures, Int. J. Plast. 18 (1) (2002) 1–49.CrossRefzbMATHGoogle Scholar
  38. 38.
    J.P. Hirth, J.L. Lothe, The Theory of Dislocations, John Wiley & Sons, New York, 1982.zbMATHGoogle Scholar
  39. 39.
    J. Luk-Cyr, D. Paquet, J. Lanteigne, H. Champliaud, A. Vadean, A unified plasticity methodology for rate- and temperature-sensitive alloys exhibiting a non-linear kinematic hardening behavior, Acta Mechanica Solida Sinica. 30 (1) (2017) 27–37.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  • Jun Xiong
    • 1
  • Yaxin Zhu
    • 1
    • 3
  • Zhenhuan Li
    • 1
    • 2
  • Minsheng Huang
    • 1
    • 2
  1. 1.Department of MechanicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.Hubei Key Laboratory of Engineering Structural Analysis and Safety AssessmentWuhanChina
  3. 3.State Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations