Acta Mechanica Solida Sinica

, Volume 30, Issue 4, pp 425–434 | Cite as

The microbuckling failure of Dyneema® composites under compression

  • Guangyan Liu
  • Wei Zhu
  • Guangyan Huang


Two grades of Dyneema® composite laminates with the commercial designations of HB26 and HB50 were cut into blocks with or without an edge crack and compressed in the lon-gitudinal fiber direction. The cracked and uncracked specimens show similar compressive responses including failure pattern and failure load. The two grades of Dyneema® composites exhibits different failure modes: a diffuse, sinusoidal buckling pattern for Dyneema® HB50 due to its weak matrix constituent and a kink band for Dyneema® HB26 due to its relatively stronger matrix constituent. An effective finite element model is used to simulate the collapse of Dyneema® composites, and the sensitivity of laminate compressive responses to the overall effective shear modulus, interlaminar shear strength, thickness and imperfection angle are investigated. The change of failure mode from kink band to sinusoidal buckling pattern by decreasing the interlaminar shear strength is validated by the finite element analyses.


Ultra-high molecular-weight polyethylene Microbuckling Cohesive Finite element analysis Compression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.P. Russell, K. Karthikeyan, V.S. Deshpande, N.A. Fleck, The high strain rate response of ultra high molecular-weight polyethylene: from fibre to laminate, Int. J. Impact Eng. 60 (2013) 1–9.CrossRefGoogle Scholar
  2. 2.
    V.B.C. Tan, V.P.W. Shim, T.E. Tay, Experimental and numerical study of the response of flexible laminates to impact loading, Int. J. Solids Struct. 40 (2003) 6245–6266.CrossRefGoogle Scholar
  3. 3.
    V.B.C. Tan, K.J.L. Khoo, Perforation of flexible laminates by projectiles of different geometry, Int. J. Impact Eng. 31 (2005) 793–810.CrossRefGoogle Scholar
  4. 4.
    E.S. Greenhalgh, V.M. Bloodworth, L. Iannucci, D. Pope, Fractographic observations on Dyneema® composites under ballistic impact, Composites: Part A 44 (2013) 51–62.CrossRefGoogle Scholar
  5. 5.
    K. Karthikeyan, B.P. Russell, N.A. Fleck, M. O’Masta, H.N.G. Wadley, V.S. Deshpande, The soft impact response of composite laminate beams, Int. J. Impact Eng. 60 (2013) 24–36.CrossRefGoogle Scholar
  6. 6.
    K. Karthikeyan, B.P. Russell, N.A. Fleck, H.N.G. Wadley, V.S. Deshpande, The effect of shear strength on the ballistic response of laminated composite plates, Eur. J. Mech.—A/Solids 42 (2013) 35–53.CrossRefGoogle Scholar
  7. 7.
    L. Iannucci, D. Pope, High velocity impact and armour design, eXPRESS Polym. Lett. 5 (2011) 262–272.CrossRefGoogle Scholar
  8. 8.
    B.D.H. Utomo, L.J. Ernst, Detailed modelling of projectile impact on dyneema composite using dynamic properties, J. Solid Mech. Mater. Eng. 2 (2008) 707–717.CrossRefGoogle Scholar
  9. 9.
    J.P. Attwood, S.N. Khaderi, K. Karthikeyan, N.A. Fleck, M.R. O’Masta, H.N.G. Wadley, V.S. Deshpande, The out-of-plane compressive response of Dyneema® composites, J. Mech. Phys. Solids 70 (2014) 200–226.CrossRefGoogle Scholar
  10. 10.
    G. Liu, M.D. Thouless, V.S. Deshpande, N.A. Fleck, Collapse of a composite beam made from ultra high molecular-weight polyethylene fibres, J. Mech. Phys. Solids 63 (2014) 320–335.CrossRefGoogle Scholar
  11. 11.
    G. Liu, Modelling microbuckling failure of a composite beam made from ultra high molecular-weight polyethylene fibres, Acta Mech. 226 (2015) 1255–1266.CrossRefGoogle Scholar
  12. 12.
    M.R. O’Masta, V.S. Deshpande, H.N.G. Wadley, Defect controlled transverse compressive strength of polyethylene fiber laminates, Int. J. Solids Struct. 52 (2015) 130–149.CrossRefGoogle Scholar
  13. 13.
    G. Liu, K.L. Tang, Study on stress concentration in notched cross-ply laminates under tensile loading, J. Compos. Mater. 50 (2015) 283–296.CrossRefGoogle Scholar
  14. 14.
    X. Guo, R. Ji, G.J. Weng, L.L. Zhu, J. Lu, Computer simulation of strength and ductility of nanotwin-strengthened coarse-grained metals, Modell. Simul. Mater. Sci. Eng. 22 (2014) 075014-1-22.CrossRefGoogle Scholar
  15. 15.
    X. Guo, R. Ji, G.J. Weng, L.L. Zhu, J. Lu, Micromechanical simulation of fracture behavior of nanostructured metal with bimodal grain size distribution, Procedia Mater. Sci. 3 (2014) 2148–2153.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.School of Mechatronical EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations