Acta Mechanica Solida Sinica

, Volume 30, Issue 3, pp 248–253 | Cite as

Stress-mediated lithiation in nanoscale phase transformation electrodes

  • Yuyang Lu
  • Yong Ni


Development of high-performance phase transformation electrodes in lithium ion batteries requires comprehensive studies on stress-mediated lithiation involving migration of the phase interface. It brings out many counter-intuitive phenomena, especially in nanoscale electrodes, such as the slowing down migration of phase interface, the vanishing of miscibility gap under high charge rate, and the formation of surface crack during lithiation. However, it is still a challenge to simulate the evolution of stress in arbitrarily-shaped nanoscale electrodes, accompanied with phase transformation and concurrent plastic deformation. This article gives a brief review of our efforts devoted to address these issues by developing phase field model and simulation. We demonstrate that the miscibility gap of two-phase state is affected not only by stress but also by surface reaction rate and particle size. In addition, the migration of phase interface slows down due to stress. It reveals that the plastic deformation generates large radial expansion, which is responsible for the transition from surface hoop compression to surface hoop tension that may induce surface crack during lithiation. We hope our effort can make a contribution to the understanding of stress-coupled kinetics in phase transformation electrodes.


Lithium ion battery Phase transformation Miscibility gap Size effect Plasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (7179) (2008) 652–657.CrossRefGoogle Scholar
  2. 2.
    J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (3) (2010) 587–603.CrossRefGoogle Scholar
  3. 3.
    C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, et al., High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol. 3 (1) (2008) 31–35.CrossRefGoogle Scholar
  4. 4.
    M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv. Mater. 25 (36) (2013) 4966–4985.CrossRefGoogle Scholar
  5. 5.
    W. Wan, Q. Zhang, Y. Cui, E. Wang, First principles study of lithium insertion in bulk silicon, J. Phys. Condens. Matter: Inst. Phys. J. 22 (41) (2010) 415501.CrossRefGoogle Scholar
  6. 6.
    Q. Zhang, W. Zhang, W. Wan, Y. Cui, E. Wang, Lithium insertion in silicon nanowires: an ab initio study, Nano Lett. 10 (9) (2010) 3243–3249.CrossRefGoogle Scholar
  7. 7.
    V.A. Sethuraman, M.J. Chon, M. Shimshak, V. Srinivasan, P.R. Guduru, In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation, J. Power Sources 195 (15) (2010) 5062–5066.CrossRefGoogle Scholar
  8. 8.
    X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L.Q. Zhang, et al., Anisotropic swelling and fracture of silicon nanowires during lithiation, Nano Lett. 11 (8) (2011) 3312–3318.CrossRefGoogle Scholar
  9. 9.
    M.N. Obrovac, L. Christensen, Structural changes in silicon anodes during Lithium insertion/extraction, Electrochem. Solid-State Lett. 7 (5) (2004) A93.CrossRefGoogle Scholar
  10. 10.
    J. Christensen, J. Newman, A mathematical model of stress generation and fracture in lithium manganese oxide, J. Electrochem. Soc. 153 (6) (2006) A1019–A1030.CrossRefGoogle Scholar
  11. 11.
    K. Zhao, M. Pharr, J.J. Vlassak, Z. Suo, Fracture of electrodes in lithium-ion batteries caused by fast charging, J. Appl. Phys. 108 (7) (2010) 073517.CrossRefGoogle Scholar
  12. 12.
    R. Malik, F. Zhou, G. Ceder, Kinetics of non-equilibrium lithium incorporation in LiFePO4, Nat. Mater. 10 (8) (2011) 587–590.CrossRefGoogle Scholar
  13. 13.
    W. Dreyer, J. Jamnik, C. Guhlke, R. Huth, J. Moskon, M. Gaberscek, The thermodynamic origin of hysteresis in insertion batteries, Nat. Mater. 9 (5) (2010) 448–453.CrossRefGoogle Scholar
  14. 14.
    P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, et al., Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4, Nature Mater. 7 (9) (2008) 741–747.CrossRefGoogle Scholar
  15. 15.
    D. Burch, M.Z. Bazant, Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles, Nano Lett. 9 (11) (2009) 3795–3800.CrossRefGoogle Scholar
  16. 16.
    V.A. Sethuraman, V. Srinivasan, A.F. Bower, P.R. Guduru, In Situ measurements of stress-potential coupling in Lithiated Silicon, J. Electrochem. Soc. 157 (11) (2010) A1253.CrossRefGoogle Scholar
  17. 17.
    Z. Cui, F. Gao, J. Qu, A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries, J. Mech. Phys. Solids 60 (7) (2012) 1280–1295.MathSciNetCrossRefGoogle Scholar
  18. 18.
    A.F. Bower, P.R. Guduru, V.A. Sethuraman, A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell, J. Mech. Phys. Solids 59 (4) (2011) 804–828.MathSciNetCrossRefGoogle Scholar
  19. 19.
    X.H. Liu, F. Fan, H. Yang, S. Zhang, J.Y. Huang, T. Zhu, Self-limiting lithiation in silicon nanowires, ACS Nano 7 (2) (2013) 1495–1503.CrossRefGoogle Scholar
  20. 20.
    Z. Jia, T. Li, Stress-modulated driving force for lithiation reaction in hollow nano-anodes, J. Power Sources 275: (2015) 866–876.CrossRefGoogle Scholar
  21. 21.
    K. Zhao, M. Pharr, Q. Wan, W.L. Wang, E. Kaxiras, J.J. Vlassak, et al., Concurrent reaction and plasticity during initial Lithiation of crystalline silicon in lithium-ion batteries, J. Electrochem. Soc. 159 (3) (2012) A238–A243.CrossRefGoogle Scholar
  22. 22.
    Y. Lu, Y. Ni, Effects of particle shape and concurrent plasticity on stress generation during lithiation in particulate Li-ion battery electrodes, Mech. Mater. (2015).Google Scholar
  23. 23.
    L. Zhang, Y. Song, L. He, Y. Ni, Variations of boundary reaction rate and particle size on the diffusion-induced stress in a phase separating electrode, J. Appl. Phys. 116 (14) (2014) 143506.CrossRefGoogle Scholar
  24. 24.
    S. Huang, F. Fan, J. Li, S. Zhang, T. Zhu, Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries, Acta Mater. 61 (12) (2013) 4354–4364.CrossRefGoogle Scholar
  25. 25.
    L. Chen, F. Fan, L. Hong, J. Chen, Y.Z. Ji, S.L. Zhang, et al., A phase-field model coupled with large elasto-plastic deformation: application to lithiated Silicon electrodes, J. Electrochem. Soc. 161 (11) (2014) F3164–F3172.CrossRefGoogle Scholar
  26. 26.
    H. Yang, F. Fan, W. Liang, X. Guo, T. Zhu, S. Zhang, A chemo-mechanical model of lithiation in silicon, J. Mech. Phys. Solids 70: (2014) 349–361.CrossRefGoogle Scholar
  27. 27.
    J. Christensen, J. Newman, Stress generation and fracture in lithium insertion materials, J. Solid State Electrochem. 10 (5) (2006) 293–319.CrossRefGoogle Scholar
  28. 28.
    M.W. Verbrugge, Y.-T. Cheng, Stress and strain-energy distributions within diffusion-controlled insertion-electrode particles subjected to periodic potential excitations, J. Electrochem. Soc. 156 (11) (2009) A927.CrossRefGoogle Scholar
  29. 29.
    W.C. Johnson, Spinodal decomposition in a small radially stressed sphere, Acta Mater. 49 (17) (2001) 3463–3474.CrossRefGoogle Scholar
  30. 30.
    Y. Lu, A.K. Soh, Y. Ni, and L.H. He, Understanding size-dependent migration of two-phase lithiation front coupled to stress, submitted to Proc. R. Soc. London A.Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern MechanicsUniversity of Science and Technology of ChinaHefeiPR China

Personalised recommendations