Skip to main content
Log in

Interlayer shear of nanomaterials: Graphene—graphene, boron nitride—boron nitride and graphene—boron nitride

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this paper, the interlayer sliding between graphene and boron nitride (h-BN) is studied by molecular dynamics simulations. The interlayer shear force between h-BN/h-BN is found to be six times higher than that of graphene/graphene, while the interlayer shear between graphene/h-BN is approximate to that of graphene/graphene. The graphene/h-BN heterostructure shows several anomalous interlayer shear characteristics compared to its bilayer counterparts. For graphene/graphene and h-BN/h-BN, interlayer shears only exit along the sliding direction while interlayer shear for graphene/h-BN is observed along both the translocation and perpendicular directions. Our results provide significant insight into the interlayer shear characteristics of 2D nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lee, Q. Li, W. Kalb, X.Z. Liu, H. Berger, R.W. Carpick, et al., Frictional characteristics of atomically thin sheets, Science 328 (5974) (2010) 76–80.

    Article  Google Scholar 

  2. J.M. Van Ruitenbeek, A.I. Yanson, G.R. Bollinger, H.E. van den Brom, N. Agrait, Nature 395 (6704) (1998) 783–785.

    Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, et al., Electric field effect in atomically thin carbon films, Science 306 (5696) (2004) 666–669.

    Article  Google Scholar 

  4. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets, Nature 446 (7131) (2007) 60–63.

    Article  Google Scholar 

  5. A. Mattausch, O. Pankratov, Ab initio study of graphene on SiC, Phys. Rev. Lett. 99 (7) (2007).

  6. K.A. Ritter, J.W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 8 (3) (2009) 235–242.

    Article  Google Scholar 

  7. K. Nomura, A.H. MacDonald, Quantum transport of massless Dirac fermions, Phys. Rev. Lett. 98 (7) (2007).

  8. M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. Williams, Atomic structure of graphene on SiO2, Nano Lett. 7 (6) (2007) 1643–1648.

    Article  Google Scholar 

  9. J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol. 3 (4) (2008) 206–209.

    Article  Google Scholar 

  10. S. Cho, M.S. Fuhrer, Charge transport and inhomogeneity near the minimum conductivity point in graphene, Phys. Rev. B 77 (8) (2008) 081402.

    Article  Google Scholar 

  11. Y. Ding, Y. Wang, J. Ni, Electronic properties of graphene nanoribbons embedded in boron nitride sheets, Appl. Phys. Lett. 95 (12) (2009) 123105.

    Google Scholar 

  12. O.V. Yazyev, A. Pasquarello, Magnetoresistive junctions based on epitaxial graphene and hexagonal boron nitride, Phys. Rev. B 80 (3) (2009) 035408.

    Article  Google Scholar 

  13. J.-W. Jiang, J.-S. Wang, B.-S. Wang, Minimum thermal conductance in graphene and boron nitride superlattice, Appl. Phys. Lett. 99 (4) (2011) 043109.

    Article  Google Scholar 

  14. N. Jain, T. Bansal, C.A. Durcan, Y. Xu, B. Yu, Monolayer graphene/hexagonal boron nitride heterostructure, Carbon 54 (2013) 396–402.

    Article  Google Scholar 

  15. T. Jiang, R. Huang, Y. Zhu, Interfacial sliding and buckling of monolayer graphene on a stretchable substrate, Adv. Funct. Mater. 24 (3) (2014) 396–402.

    Article  Google Scholar 

  16. D.C. Elias, R.R. Nair, T.M. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, et al., Control of graphene’s properties by reversible hydrogenation: evidence for graphane, Science 323 (5914) (2009) 610–613.

    Article  Google Scholar 

  17. S. Kwon, J.H. Ko, K.J. Jeon, Y.H. Kim, J.Y. Park, Enhanced nanoscale friction on fluorinated graphene, Nano Lett. 12 (12) (2012) 6043–6048.

    Article  Google Scholar 

  18. Y. Guo, W. Guo, C. Chen, Modifying atomic-scale friction between two graphene sheets: a molecular-force-field study, Phy. Rev. B 76 (15) (2007) 155429.

    Article  Google Scholar 

  19. H. Zhang, Z. Guo, H. Gao, T. Chang, Stiffness-dependent interlayer friction of graphene, Carbon 94 (2015) 60–66.

    Article  Google Scholar 

  20. W. Ouyang, M. Ma, Q. Zheng, M. Urbakh, Frictional properties of nanojunctions including atomically thin sheets, Nano Lett. 16 (3) (2016) 1878–1883.

    Article  Google Scholar 

  21. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinfeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, W., Guo, B. et al. Interlayer shear of nanomaterials: Graphene—graphene, boron nitride—boron nitride and graphene—boron nitride. Acta Mech. Solida Sin. 30, 234–240 (2017). https://doi.org/10.1016/j.camss.2017.05.002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.camss.2017.05.002

Keywords

Navigation