Acta Mechanica Solida Sinica

, Volume 30, Issue 3, pp 241–247 | Cite as

Molecular dynamics simulation of diffusion of nanoparticles in mucus

  • Jiuling Wang
  • Xinghua Shi


The rapid diffusion of nanoparticles (NPs) through mucus layer is critical for efficient transportation of NPs-loaded drug delivery system. To understand how the physical and surface properties of NPs affect their diffusion in mucus, we have developed a coarse-grained molecular dynamics model to study the diffusion of NPs in modeled mucus layer. Both steric obstruction and hydrodynamic interaction are included in the model capable of capturing the key characteristics of NPs’ diffusion in mucus. The results show that both particle size and surface properties significantly affect the diffusivities of NPs in mucus. Furthermore, we find rodlike NPs can gain a higher diffusivity than spherical NPs with the same hydrodynamic diameter. In addition, the disturbed environment can enhance the diffusivity of NPs. Our findings can be utilized to design mucus penetrating NPs for targeted drug delivery system.


Nanoparticle diffusion Mucus penetration Fibrous medium Molecular dynamics simulation Drug delivery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.K. Lai, Y.Y. Wang, J. Hanes, Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues, Adv. Drug Delivery Rev. 61 (2009) 158–171.CrossRefGoogle Scholar
  2. 2.
    R.A. Cone, Barrier properties of mucus, Adv. Drug Delivery Rev. 61 (2009) 75–85.CrossRefGoogle Scholar
  3. 3.
    S.K. Lai, Y.Y. Wang, D. Wirtz, J. Hanes, Micro- and macrorheology of mucus, Adv. Drug Delivery Rev. 61 (2009) 86–100.CrossRefGoogle Scholar
  4. 4.
    T.L. Doane, C. Burda, The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy, Chem. Soc. Rev. 41 (2012) 2885–2911.CrossRefGoogle Scholar
  5. 5.
    S.K. Lai, D.E. O’Hanlon, S. Harrold, S.T. Man, Y.Y. Wang, R. Cone, J. Hanes, Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus, Proc. Natl. Acad. Sci. USA 104 (2007) 1482–1487.CrossRefGoogle Scholar
  6. 6.
    Y.Y. Wang, S.K. Lai, J.S. Suk, A. Pace, R. Cone, J. Hanes, Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier, Angew. Chem.-Int. Ed. 47 (2008) 9726–9729.CrossRefGoogle Scholar
  7. 7.
    S.K. Lai, Y.Y. Wang, K. Hida, R. Cone, J. Hanes, Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses, Proc. Natl. Acad. Sci. USA 107 (2010) 598–603.CrossRefGoogle Scholar
  8. 8.
    B.C. Tang, M. Dawson, S.K. Lai, Y.Y. Wang, J.S. Suk, M. Yang, P. Zeitlin, M.P. Boyle, J. Fu, J. Hanes, Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier, Proc. Natl. Acad. Sci. USA 106 (2009) 19268–19273.CrossRefGoogle Scholar
  9. 9.
    V.P. Chauhan, Z. Popovic, O. Chen, J. Cui, D. Fukumura, M.G. Bawendi, R.K. Jain, Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration, Angew. Chem.-Int. Ed. 50 (2011) 11417–11420.CrossRefGoogle Scholar
  10. 10.
    M. Yu, J. Wang, Y. Yang, C. Zhu, Q. Su, S. Guo, J. Sun, Y. Gan, X. Shi, H. Gao, Rotation-facilitated rapid transport of nanorods in mucosal tissues, Nano Lett. 16 (2016) 7176–7182.CrossRefGoogle Scholar
  11. 11.
    K. Yang, Y.Q. Ma, Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer, Nat. Nanotechnol. 5 (2010) 579–583.CrossRefGoogle Scholar
  12. 12.
    J.L. Wang, H.M. Yao, X.H. Shi, Cooperative entry of nanoparticles into the cell, J. Mech. Phys. Solids 73 (2014) 151–165.MathSciNetCrossRefGoogle Scholar
  13. 13.
    J.L. Wang, Y.J. Wei, X.H. Shi, H.J. Gao, Cellular entry of graphene nanosheets: the role of thickness, oxidation and surface adsorption, RSC Adv. 3 (2013) 15776–15782.CrossRefGoogle Scholar
  14. 14.
    T. Stylianopoulos, B. Diop-Frimpong, L.L. Munn, R.K. Jain, Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation, Biophys. J. 99 (2010) 3119–3128.CrossRefGoogle Scholar
  15. 15.
    S.S. Olmsted, J.L. Padgett, A.I. Yudin, K.J. Whaley, T.R. Moench, R.A. Cone, Diffusion of macromolecules and virus-like particles in human cervical mucus, Biophys. J. 81 (2001) 1930–1937.CrossRefGoogle Scholar
  16. 16.
    T. Ando, J. Skolnick, Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion, Proc. Natl. Acad. Sci. USA 107 (2010) 18457–18462.CrossRefGoogle Scholar
  17. 17.
    O. Lieleg, K. Ribbeck, Biological hydrogels as selective diffusion barriers, Trends Cell Biol. 21 (2011) 543–551.CrossRefGoogle Scholar
  18. 18.
    A. Pluen, P.A. Netti, R.K. Jain, D.A. Berk, Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations, Biophys. J. 77 (1999) 542–552.CrossRefGoogle Scholar
  19. 19.
    T. Stylianopoulos, M.Z. Poh, N. Insin, M.G. Bawendi, D. Fukumura, L.L. Munn, R.K. Jain, Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions, Biophys. J. 99 (2010) 1342–1349.CrossRefGoogle Scholar
  20. 20.
    J. Kirch, A. Schneider, B. Abou, A. Hopf, U.F. Schaefer, M. Schneider, C. Schall, C. Wagner, C.M. Lehr, Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus, Proc. Natl. Acad. Sci. USA 109 (2012) 18355–18360.CrossRefGoogle Scholar
  21. 21.
    R. Agarwal, P. Jurney, M. Raythatha, V. Singh, S.V. Sreenivasan, L. Shi, K. Roy, Effect of shape, size, and aspect ratio on nanoparticle penetration and distribution inside solid tissues using 3D spheroid models, Adv. Healthcare Mater. 4 (2015) 2269–2280.CrossRefGoogle Scholar
  22. 22.
    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1–19.CrossRefGoogle Scholar
  23. 23.
    F. Hofling, T. Franosch, Anomalous transport in the crowded world of biological cells, Rep. Progress Phys. 76 (2013) 046602.MathSciNetCrossRefGoogle Scholar
  24. 24.
    R. Walder, N. Nelson, D.K. Schwartz, Single molecule observations of desorption-mediated diffusion at the solid-liquid interface, Phys. Rev. Lett. 107 (2011) 156102.CrossRefGoogle Scholar
  25. 25.
    M.J. Skaug, J. Mabry, D.K. Schwartz, Intermittent molecular hopping at the solid-liquid interface, Phys. Rev. Lett. 110 (2013) 256101.CrossRefGoogle Scholar
  26. 26.
    E. Gavze, M. Shapiro, Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity, J. Fluid Mech. 371 (1998) 59–79.CrossRefGoogle Scholar
  27. 27.
    P. Decuzzi, R. Pasqualini, W. Arap, M. Ferrari, Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res. 26 (2009) 235–243.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.LNM, Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and TechnologyChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations