Advertisement

Acta Mechanica Solida Sinica

, Volume 30, Issue 3, pp 254–262 | Cite as

Lithiation-enhanced charge transfer and sliding strength at the silicon-graphene interface: A first-principles study

  • Cheng Chang
  • Xiaoyan Li
  • Zhiping Xu
  • Huajian Gao
Article
  • 1 Downloads

Abstract

The application of silicon as ultrahigh capacity electrodes in lithium-ion batteries has been limited by a number of mechanical degradation mechanisms including fracture, delamination and plastic ratcheting, as a result of its large volumetric change during lithiation and delithiation. Graphene coating is one feasible technique to mitigate the mechanical degradation of Si anode and improve its conductivity. In this paper, first-principles calculations are performed to study the atomic structure, charge transfer and sliding strength of the interface between lithiated silicon and graphene. Our results show that Li atoms segregate at the (lithiated) Si-graphene interface preferentially, donating electrons to graphene and enhancing the interfacial sliding resistance. Moreover, the interfacial cohesion and sliding strength can be further enhanced by introducing single-vacancy defects into graphene. These findings provide insights that can guide the design of stable and efficient anodes of silicon/graphene hybrids for energy storage applications.

Keywords

Lithium-ion batteries Silicon anode Graphene coating Interfacial sliding strength First-principles calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mukhopadhyay, B.W. Sheldon, Deformation and stress in electrode materials for Li-ion batteries, Prog. Mater. Sci. 63 (2014) 58.CrossRefGoogle Scholar
  2. 2.
    L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, J.R. Dahn, Colossal reversible volume changes in lithium alloys, Electronchem. Solid-State Lett. 4 (9) (2001) A137.CrossRefGoogle Scholar
  3. 3.
    X. Xiao, P. Liu, M.W. Verbrugge, H. Haftbaradaran, H. Gao, Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries, J. Power Sources 196 (3) (2011) 1409.CrossRefGoogle Scholar
  4. 4.
    H. Haftbaradaran, X. Xiao, M.W. Verbrugge, H. Gao, Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands, J. Power Sources 206 (2012) 357.CrossRefGoogle Scholar
  5. 5.
    H. Haftbaradaran, H. Gao, Ratcheting of silicon island electrodes on substrate due to cyclic intercalation, Appl. Phys. Lett. 100 (12) (2012) 121907.CrossRefGoogle Scholar
  6. 6.
    C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Commun. 3 (1) (2008) 31.Google Scholar
  7. 7.
    X. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano 6 (2) (2012) 1522.CrossRefGoogle Scholar
  8. 8.
    O. Mao, R.L. Turner, I.A. Courtney, B.D. Fredericksen, M.I. Buckett, L.J. Krause, J.R. Dahn, Active/inactive nanocomposites as anodes for Li-ion batteries, Electronchem. Solid-State Lett. 2 (1) (1999) 3.Google Scholar
  9. 9.
    L.Y. Beaulieu, K.C. Hewitt, R.L. Turner, A. Bonakdarpour, A.A. Abdo, L. Christensen, K.W. Eberman, L.J. Krause, J.R. Dahn, The electrochemical reaction of Li with amorphous Si-Sn alloys, J. Electronchem. Soc. 150 (2) (2003) A149.CrossRefGoogle Scholar
  10. 10.
    M.D. Fleischauer, J.M. Topple, J.R. Dahn, Combinatorial investigations of Si-M (M = Cr+Ni, Fe, Mn) thin film negative electrode materials, Electronchem. Solid-State Lett. 8 (2) (2005) A137.CrossRefGoogle Scholar
  11. 11.
    M.T. McDowell, S.W. Lee, J.T. Harris, B.A. Korgel, C. Wang, W.D. Nix, Y. Cui, In situ TEM of two-phase lithiation of amorphous silicon nanospheres, Nano Lett. 13 (2) (2013) 758.CrossRefGoogle Scholar
  12. 12.
    I. Ryu, J.W. Choi, Y. Cui, W.D. Nix, Size-dependent fracture of Si nanowire battery anodes, J. Mech. Phys. Solids 59 (9) (2011) 1717.CrossRefGoogle Scholar
  13. 13.
    S.W. Lee, M.T. McDowell, L.A. Berla, W.D. Nix, Y. Cui, Fracture of crystalline silicon nanopillars during electrochemical lithium insertion, Proc. Natl. Acad. Sci. 109 (11) (2012) 4080.Google Scholar
  14. 14.
    S. Yoon, S.-I. Lee, H. Kim, H.-J. Sohn, Enhancement of capacity of carbon-coated Si—Cu3Si composite anode using metal—organic compound for lithium-ion batteries, J. Power Sources 161 (2) (2006) 1319.CrossRefGoogle Scholar
  15. 15.
    X. Hou, M. Zhang, J. Wang, S. Hu, X. Liu, Deposition of silver nanoparticles into silicon/carbon composite as a high-performance anode material for Li-ion batteries, J. Solid State Electrochem. 19 (12) (2015) 3595.CrossRefGoogle Scholar
  16. 16.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (5887) (2008) 385.CrossRefGoogle Scholar
  17. 17.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (3) (2008) 902.CrossRefGoogle Scholar
  18. 18.
    A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (3) (2007) 183.CrossRefGoogle Scholar
  19. 19.
    S.-L. Chou, J.-Z. Wang, M. Choucair, H.-K. Liu, J.A. Stride, S.-X. Dou, Enhanced reversible lithium storage in a nanosize silicon/graphene composite, Electrochem. Commun. 12 (2) (2010) 303.CrossRefGoogle Scholar
  20. 20.
    J. Luo, X. Zhao, J. Wu, H.D. Jang, H.H. Kung, J. Huang, Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes, J. Phys. Chem. Lett. 3 (13) (2012) 1824.CrossRefGoogle Scholar
  21. 21.
    Y. Wen, Y. Zhu, A. Langrock, A. Manivannan, S.H. Ehrman, C. Wang, Graphene-bonded and -encapsulated Si nanoparticles for lithium ion battery anodes, Small 9 (16) (2013) 2810.CrossRefGoogle Scholar
  22. 22.
    I.H. Son, J. Hwan Park, S. Kwon, S. Park, M.H. Rummeli, A. Bachmatiuk, H.J. Song, J. Ku, J.W. Choi, J.M. Choi, S.G. Doo, H. Chang, Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density, Nat. Commun. 6 (2015) 7393.CrossRefGoogle Scholar
  23. 23.
    S. Zhu, C. Zhu, J. Ma, Q. Meng, Z. Guo, Z. Yu, T. Lu, Y. Li, D. Zhang, W.M. Lau, Controlled fabrication of Si nanoparticles on graphene sheets for Li-ion batteries, RSC Adv. 3 (17) (2013) 6141.CrossRefGoogle Scholar
  24. 24.
    F. Xia, S. Kwon, W.W. Lee, Z. Liu, S. Kim, T. Song, K.J. Choi, U. Paik, W.I. Park, Graphene as an interfacial layer for improving cycling performance of Si nanowires in lithium-ion batteries, Nano Lett. 15 (10) (2015) 6658.CrossRefGoogle Scholar
  25. 25.
    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1.CrossRefGoogle Scholar
  26. 26.
    Z. Cui, F. Gao, Z. Cui, J. Qu, A second nearest-neighbor embedded atom method interatomic potential for Li-Si alloys, J. Power Sources 207 (2012) 150.CrossRefGoogle Scholar
  27. 27.
    M.E. Stournara, X. Xiao, Y. Qi, P. Johari, P. Lu, B.W. Sheldon, H. Gao, V.B. Shenoy, Li segregation induces structure and strength changes at the amorphous Si/Cu interface, Nano Lett. 13 (10) (2013) 4759.CrossRefGoogle Scholar
  28. 28.
    C.-Y. Chou, G.S. Hwang, Surface effects on the structure and lithium behavior in lithiated silicon: a first principles study, Surf. Sci. 612 (2013) 16.CrossRefGoogle Scholar
  29. 29.
    G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1) (1996) 15.CrossRefGoogle Scholar
  30. 30.
    G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (16) (1996) 11169.CrossRefGoogle Scholar
  31. 31.
    G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (3) (1999) 1758.CrossRefGoogle Scholar
  32. 32.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865.CrossRefGoogle Scholar
  33. 33.
    M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Van der Waals density functional for general geometries, Phys. Rev. Lett. 92 (24) (2004) 246401.CrossRefGoogle Scholar
  34. 34.
    G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 (3) (2006) 354.CrossRefGoogle Scholar
  35. 35.
    C.-Y. Chou, G.S. Hwang, Role of interface in the lithiation of silicon-graphene composites: A first principles study, J. Phys. Chem. C 117 (19) (2013) 9598.CrossRefGoogle Scholar
  36. 36.
    A.L. Allred, Electronegativity values from thermochemical data, J. Inorg. Nucl. Chem. 17 (3) (1961) 215.Google Scholar
  37. 37.
    F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene, ACS Nano 5 (1) (2011) 26.CrossRefGoogle Scholar
  38. 38.
    J. Kotakoski, A.V. Krasheninnikov, U. Kaiser, J.C. Meyer, From point defects in graphene to two-dimensional amorphous carbon, Phys. Rev. Lett. 106 (10) (2011) 105505.CrossRefGoogle Scholar
  39. 39.
    F. Hao, D. Fang, Z. Xu, Mechanical and thermal transport properties of graphene with defects, Appl. Phys. Lett. 99 (4) (2011) 041901.CrossRefGoogle Scholar
  40. 40.
    K. Yan, H.-W. Lee, T. Gao, G. Zheng, H. Yao, H. Wang, Z. Lu, Y. Zhou, Z. Liang, Z. Liu, S. Chu, Y. Cui, Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode, Nano Lett. 14 (10) (2014) 6016.CrossRefGoogle Scholar
  41. 41.
    Y. Zhang, Y. Wang, J. Yang, W. Shi, H. Yang, W. Huang, X. Dong, MoS2 coated hollow carbon spheres for anodes of lithium ion batteries, 2D Mater. 3 (2) (2016) 024001.Google Scholar
  42. 42.
    J. Zhang, Y. Yang, J. Lou, Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution, Nanotechnology 27 (36) (2016) 364004.CrossRefGoogle Scholar
  43. 43.
    K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Appl. Crystallogr. 41 (3) (2008) 653.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Nano and Micro Mechanics, Center for Advanced Mechanics and MaterialsTsinghua UniversityBeijingChina
  2. 2.School of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations