Skip to main content

Advertisement

Log in

Lithiation-enhanced charge transfer and sliding strength at the silicon-graphene interface: A first-principles study

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The application of silicon as ultrahigh capacity electrodes in lithium-ion batteries has been limited by a number of mechanical degradation mechanisms including fracture, delamination and plastic ratcheting, as a result of its large volumetric change during lithiation and delithiation. Graphene coating is one feasible technique to mitigate the mechanical degradation of Si anode and improve its conductivity. In this paper, first-principles calculations are performed to study the atomic structure, charge transfer and sliding strength of the interface between lithiated silicon and graphene. Our results show that Li atoms segregate at the (lithiated) Si-graphene interface preferentially, donating electrons to graphene and enhancing the interfacial sliding resistance. Moreover, the interfacial cohesion and sliding strength can be further enhanced by introducing single-vacancy defects into graphene. These findings provide insights that can guide the design of stable and efficient anodes of silicon/graphene hybrids for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Mukhopadhyay, B.W. Sheldon, Deformation and stress in electrode materials for Li-ion batteries, Prog. Mater. Sci. 63 (2014) 58.

    Article  Google Scholar 

  2. L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, J.R. Dahn, Colossal reversible volume changes in lithium alloys, Electronchem. Solid-State Lett. 4 (9) (2001) A137.

    Article  Google Scholar 

  3. X. Xiao, P. Liu, M.W. Verbrugge, H. Haftbaradaran, H. Gao, Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries, J. Power Sources 196 (3) (2011) 1409.

    Article  Google Scholar 

  4. H. Haftbaradaran, X. Xiao, M.W. Verbrugge, H. Gao, Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands, J. Power Sources 206 (2012) 357.

    Article  Google Scholar 

  5. H. Haftbaradaran, H. Gao, Ratcheting of silicon island electrodes on substrate due to cyclic intercalation, Appl. Phys. Lett. 100 (12) (2012) 121907.

    Article  Google Scholar 

  6. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Commun. 3 (1) (2008) 31.

    Google Scholar 

  7. X. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano 6 (2) (2012) 1522.

    Article  Google Scholar 

  8. O. Mao, R.L. Turner, I.A. Courtney, B.D. Fredericksen, M.I. Buckett, L.J. Krause, J.R. Dahn, Active/inactive nanocomposites as anodes for Li-ion batteries, Electronchem. Solid-State Lett. 2 (1) (1999) 3.

    Google Scholar 

  9. L.Y. Beaulieu, K.C. Hewitt, R.L. Turner, A. Bonakdarpour, A.A. Abdo, L. Christensen, K.W. Eberman, L.J. Krause, J.R. Dahn, The electrochemical reaction of Li with amorphous Si-Sn alloys, J. Electronchem. Soc. 150 (2) (2003) A149.

    Article  Google Scholar 

  10. M.D. Fleischauer, J.M. Topple, J.R. Dahn, Combinatorial investigations of Si-M (M = Cr+Ni, Fe, Mn) thin film negative electrode materials, Electronchem. Solid-State Lett. 8 (2) (2005) A137.

    Article  Google Scholar 

  11. M.T. McDowell, S.W. Lee, J.T. Harris, B.A. Korgel, C. Wang, W.D. Nix, Y. Cui, In situ TEM of two-phase lithiation of amorphous silicon nanospheres, Nano Lett. 13 (2) (2013) 758.

    Article  Google Scholar 

  12. I. Ryu, J.W. Choi, Y. Cui, W.D. Nix, Size-dependent fracture of Si nanowire battery anodes, J. Mech. Phys. Solids 59 (9) (2011) 1717.

    Article  Google Scholar 

  13. S.W. Lee, M.T. McDowell, L.A. Berla, W.D. Nix, Y. Cui, Fracture of crystalline silicon nanopillars during electrochemical lithium insertion, Proc. Natl. Acad. Sci. 109 (11) (2012) 4080.

    Google Scholar 

  14. S. Yoon, S.-I. Lee, H. Kim, H.-J. Sohn, Enhancement of capacity of carbon-coated Si—Cu3Si composite anode using metal—organic compound for lithium-ion batteries, J. Power Sources 161 (2) (2006) 1319.

    Article  Google Scholar 

  15. X. Hou, M. Zhang, J. Wang, S. Hu, X. Liu, Deposition of silver nanoparticles into silicon/carbon composite as a high-performance anode material for Li-ion batteries, J. Solid State Electrochem. 19 (12) (2015) 3595.

    Article  Google Scholar 

  16. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (5887) (2008) 385.

    Article  Google Scholar 

  17. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (3) (2008) 902.

    Article  Google Scholar 

  18. A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (3) (2007) 183.

    Article  Google Scholar 

  19. S.-L. Chou, J.-Z. Wang, M. Choucair, H.-K. Liu, J.A. Stride, S.-X. Dou, Enhanced reversible lithium storage in a nanosize silicon/graphene composite, Electrochem. Commun. 12 (2) (2010) 303.

    Article  Google Scholar 

  20. J. Luo, X. Zhao, J. Wu, H.D. Jang, H.H. Kung, J. Huang, Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes, J. Phys. Chem. Lett. 3 (13) (2012) 1824.

    Article  Google Scholar 

  21. Y. Wen, Y. Zhu, A. Langrock, A. Manivannan, S.H. Ehrman, C. Wang, Graphene-bonded and -encapsulated Si nanoparticles for lithium ion battery anodes, Small 9 (16) (2013) 2810.

    Article  Google Scholar 

  22. I.H. Son, J. Hwan Park, S. Kwon, S. Park, M.H. Rummeli, A. Bachmatiuk, H.J. Song, J. Ku, J.W. Choi, J.M. Choi, S.G. Doo, H. Chang, Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density, Nat. Commun. 6 (2015) 7393.

    Article  Google Scholar 

  23. S. Zhu, C. Zhu, J. Ma, Q. Meng, Z. Guo, Z. Yu, T. Lu, Y. Li, D. Zhang, W.M. Lau, Controlled fabrication of Si nanoparticles on graphene sheets for Li-ion batteries, RSC Adv. 3 (17) (2013) 6141.

    Article  Google Scholar 

  24. F. Xia, S. Kwon, W.W. Lee, Z. Liu, S. Kim, T. Song, K.J. Choi, U. Paik, W.I. Park, Graphene as an interfacial layer for improving cycling performance of Si nanowires in lithium-ion batteries, Nano Lett. 15 (10) (2015) 6658.

    Article  Google Scholar 

  25. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1.

    Article  Google Scholar 

  26. Z. Cui, F. Gao, Z. Cui, J. Qu, A second nearest-neighbor embedded atom method interatomic potential for Li-Si alloys, J. Power Sources 207 (2012) 150.

    Article  Google Scholar 

  27. M.E. Stournara, X. Xiao, Y. Qi, P. Johari, P. Lu, B.W. Sheldon, H. Gao, V.B. Shenoy, Li segregation induces structure and strength changes at the amorphous Si/Cu interface, Nano Lett. 13 (10) (2013) 4759.

    Article  Google Scholar 

  28. C.-Y. Chou, G.S. Hwang, Surface effects on the structure and lithium behavior in lithiated silicon: a first principles study, Surf. Sci. 612 (2013) 16.

    Article  Google Scholar 

  29. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1) (1996) 15.

    Article  Google Scholar 

  30. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (16) (1996) 11169.

    Article  Google Scholar 

  31. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (3) (1999) 1758.

    Article  Google Scholar 

  32. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865.

    Article  Google Scholar 

  33. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Van der Waals density functional for general geometries, Phys. Rev. Lett. 92 (24) (2004) 246401.

    Article  Google Scholar 

  34. G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 (3) (2006) 354.

    Article  Google Scholar 

  35. C.-Y. Chou, G.S. Hwang, Role of interface in the lithiation of silicon-graphene composites: A first principles study, J. Phys. Chem. C 117 (19) (2013) 9598.

    Article  Google Scholar 

  36. A.L. Allred, Electronegativity values from thermochemical data, J. Inorg. Nucl. Chem. 17 (3) (1961) 215.

    Google Scholar 

  37. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene, ACS Nano 5 (1) (2011) 26.

    Article  Google Scholar 

  38. J. Kotakoski, A.V. Krasheninnikov, U. Kaiser, J.C. Meyer, From point defects in graphene to two-dimensional amorphous carbon, Phys. Rev. Lett. 106 (10) (2011) 105505.

    Article  Google Scholar 

  39. F. Hao, D. Fang, Z. Xu, Mechanical and thermal transport properties of graphene with defects, Appl. Phys. Lett. 99 (4) (2011) 041901.

    Article  Google Scholar 

  40. K. Yan, H.-W. Lee, T. Gao, G. Zheng, H. Yao, H. Wang, Z. Lu, Y. Zhou, Z. Liang, Z. Liu, S. Chu, Y. Cui, Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode, Nano Lett. 14 (10) (2014) 6016.

    Article  Google Scholar 

  41. Y. Zhang, Y. Wang, J. Yang, W. Shi, H. Yang, W. Huang, X. Dong, MoS2 coated hollow carbon spheres for anodes of lithium ion batteries, 2D Mater. 3 (2) (2016) 024001.

    Google Scholar 

  42. J. Zhang, Y. Yang, J. Lou, Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution, Nanotechnology 27 (36) (2016) 364004.

    Article  Google Scholar 

  43. K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Appl. Crystallogr. 41 (3) (2008) 653.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiping Xu or Huajian Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C., Li, X., Xu, Z. et al. Lithiation-enhanced charge transfer and sliding strength at the silicon-graphene interface: A first-principles study. Acta Mech. Solida Sin. 30, 254–262 (2017). https://doi.org/10.1016/j.camss.2017.03.011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.camss.2017.03.011

Keywords

Navigation