Acta Mechanica Solida Sinica

, Volume 30, Issue 2, pp 165–173 | Cite as

Frequency-dependent random fatigue of panel-type structures made of ceramic matrix composites

  • Yadong Zhou
  • Xiaochen Hang
  • Shaoqing Wu
  • Qingguo Fei
  • Natasa Trisovic


The panel-type structures used in aerospace engineering can be subjected to severe high-frequency acoustic loadings in service. This paper evaluates the frequency-dependent random fatigue of panel-type structures made of ceramic matrix composites (CMCs) under acoustic loadings. Firstly, the high-frequency random responses from the broadband random excitation will result in more stress cycles in a definite period of time. The probability density distributions of stress amplitudes will be different in different frequency band-widths, though the peak stress estimations are identical. Secondly, the fatigue properties of CMCs can be highly frequency-dependent. The fatigue evaluation method for the random vibration case is adopted to evaluate the fatigue damage of a representative stiffened panel structure. The frequency effect through S-N curves on random fatigue damage is numerically verified. Finally, a parameter is demonstrated to characterize the mean vibration frequency of a random process, and hence this parameter can further be considered as a reasonable loading frequency in the fatigue tests of CMCs to obtain more reliable S-N curves. Therefore, the influence of vibration frequency can be incorporated in the random fatigue model from the two perspectives.


Random fatigue Frequency effect Ceramic matrix composites (CMCs) S-N curve Loading frequency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.F. Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites, Adv. Eng. Mater. 4 (12) (2002) 903–912.CrossRefGoogle Scholar
  2. 2.
    R.R. Naslain, SiC-matrix composites: nonbrittle ceramics for thermo-structural application, Int. J. Appl. Ceramic Technol. 2 (2) (2005) 75–84.CrossRefGoogle Scholar
  3. 3.
    T. Pichon, R. Barreteau, P. Soyris, A. Foucault, J.M. Parenteau, Y. Prel, et al., CMC thermal protection system for future reusable launch vehicles: Generic shingle technological maturation and tests, Acta Astronautica. 65 (1) (2009) 165–176.CrossRefGoogle Scholar
  4. 4.
    R.G. White, P.R. Cunningham, A review of analytical methods for aircraft structures subjected to high-intensity random acoustic loads, Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng. 218 (3) (2004) 231–242.CrossRefGoogle Scholar
  5. 5.
    J. Nilsson, R.-Z. Szász, P.-E. Austrell, E.J. Gutmark, Load and Response Prediction Using Numerical Methods in Acoustic Fatigue, J. Aircraft. 53 (2) (2016) 406–415.CrossRefGoogle Scholar
  6. 6.
    B. Arguillat, D. Ricot, C. Bailly, G. Robert, Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations, J. Acoust. Soc. Am. 128 (4) (2010) 1647–1655. PubMed PMID: 20968337.CrossRefGoogle Scholar
  7. 7.
    Y.D. Sha, L. Zhu, X.B. Jie, X.C. Luan, F.F. Feng, Nonlinear random response and fatigue life estimation of curved panels to non-uniform temperature field and acoustic loadings, J. Vib. Control. 22 (3) (2014) 896–911.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Y. Zhou, S. Wu, Z. Tan, Q. Fei, Temperature-dependence of acoustic fatigue life for thermal protection structures, Theor. Appl. Mech. Lett. 4 (2) (2014) 021005.CrossRefGoogle Scholar
  9. 9.
    L. Liu, Q. Guo, T. He, Thermal-acoustic fatigue of a multilayer thermal protection system in combined extreme environments, Adv. Mech. Eng. 6 (2015) 176891.CrossRefGoogle Scholar
  10. 10.
    A. Vassilopoulos, Fatigue Life Prediction of Composites and Composite Structures, New Delhi: Woodhead Publishing Limited, Oxford, Cambridge, 2010.CrossRefGoogle Scholar
  11. 11.
    J.W. Holmes, S.F. Shuler, Temperature rise during fatigue of fibre-reinforced ceramics, J. Mater. Sci. Lett. 9 (11) (1990) 1290–1291.CrossRefGoogle Scholar
  12. 12.
    S.F. Shuler, J.W. Holmes, X. Wu, D. Roach, Influence of loading frequency on the room-temperature fatigue of a carbon-fiber/SiC-matrix composite, J. Am. Ceramic Soc. 76 (9) (1993) 2327–2336.CrossRefGoogle Scholar
  13. 13.
    J.W. Holmes, X. Wu, B.F. Sorensen, Frequency dependence of fatigue life and internal heating of a fiber-reinforced/ceramic-matrix composite, J. Am. Ceramic Soc. 77 (12) (1994) 3284–3286.CrossRefGoogle Scholar
  14. 14.
    J.M. Staehler, S. Mall, L.P. Zawada, Frequency dependence of high-cycle fatigue behavior of CVI C/SiC at room temperature, Compos. Sci. Technol. 63 (15) (2003) 2121–2131.CrossRefGoogle Scholar
  15. 15.
    S. Mall, J.M. Engesser, Effects of frequency on fatigue behavior of CVI C/SiC at elevated temperature, Compos. Sci. Technol. 66 (7–8) (2006) 863–874.CrossRefGoogle Scholar
  16. 16.
    M.B. Ruggles-Wrenn, G. Hetrick, S.S. Baek, Effects of frequency and environment on fatigue behavior of an oxide–oxide ceramic composite at 1200°C, Int. J. Fatigue 30 (3) (2008) 502–516.CrossRefGoogle Scholar
  17. 17.
    M.B. Ruggles-Wrenn, D.T. Christensen, A.L. Chamberlain, J.E. Lane, T.S. Cook, Effect of frequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix composite at 1200°C, Compos. Sci. Technol. 71 (2) (2011) 190–196.CrossRefGoogle Scholar
  18. 18.
    J.J. Hollkamp, R.W. Gordon, S.M. Spottswood, Nonlinear modal models for sonic fatigue response prediction: a comparison of methods, J. Sound Vib. 284 (3–5) (2005) 1145–1163.CrossRefGoogle Scholar
  19. 19.
    M. Behnke, A. Sharma, A. Przekop, S. Rizzi, Thermal-acoustic analysis of a metallic integrated thermal protection system structure, in: Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Orlando, Florida: American Institute of Aeronautics and Astronautics, 2010.CrossRefGoogle Scholar
  20. 20.
    W. Li, Y. Li, Vibration and sound radiation of an asymmetric laminated plate in thermal environments, Acta Mechanica Solida Sinica. 28 (1) (2015) 11–22.CrossRefGoogle Scholar
  21. 21.
    Q. Geng, D. Wang, Y. Liu, Y. Li, Experimental and numerical investigations on dynamic and acoustic responses of a thermal post-buckled plate, Sci. China Technol. Sciences. 58 (8) (2015) 1414–1424.CrossRefGoogle Scholar
  22. 22.
    M. Aykan, M. Çelik, Vibration fatigue analysis and multi-axial effect in testing of aerospace structures, Mech. Syst. Signal Process. 23 (3) (2009) 897–907.CrossRefGoogle Scholar
  23. 23.
    Y. Zhou, Q. Fei, S. Wu, Utilization of modal stress approach in random-vibration fatigue evaluation, in: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016 Epub ahead of print 26 Oct 2016.Google Scholar
  24. 24.
    S.-H. Han, D.-G. An, S.-J. Kwak, K.-W. Kang, Vibration fatigue analysis for multi-point spot-welded joints based on frequency response changes due to fatigue damage accumulation, Int. J. Fatigue. 48 (2013) 170–177.CrossRefGoogle Scholar
  25. 25.
    M. Mršnik, J. Slavič, M. Boltežar, Frequency-domain methods for a vibration-fatigue-life estimation – Application to real data, Int. J. Fatigue. 47 (2013) 8–17.CrossRefGoogle Scholar
  26. 26.
    Y. Wang, Spectral fatigue analysis of a ship structural detail – A practical case study, Int. J. Fatigue. 32 (2) (2010) 310–317.CrossRefGoogle Scholar
  27. 27.
    D. Benasciutti, R. Tovo, Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes, Probabilistic Eng. Mech. 21 (4) (2006) 287–299.CrossRefGoogle Scholar
  28. 28.
    Dirlik T. Application of Computers in Fatigue Analysis: University of Warwick; 1985.Google Scholar
  29. 29.
    P.R. Cunningham, R.G. White, Dynamic response of doubly curved honeycomb sandwich panels to random acoustic excitation. Part 1: Experimental study, J. Sound Vib. 264 (3) (2003) 579–603.CrossRefGoogle Scholar
  30. 30.
    DoD. U.S.A. Military standard: environmental test methods and engineering guidelines. Acoustic noise. Ohio 1983.Google Scholar
  31. 31.
    Y.L. Lee, J. Pan, R. Hathaway, B. Mark, Fatigue Testing And Analysis: Theory And Practice, Elsevier Butterworth-Heinemann, Burlington, MA, 2005.Google Scholar
  32. 32.
    I.F. Blake, W.C. Lindsey, Level-crossing problems for random processes, IEEE Trans. Inf. Theory. 19 (3) (1973) 295–315.MathSciNetCrossRefGoogle Scholar
  33. 33.
    J.J. Wijker, Random Vibrations in Spacecraft Structures design: Theory and Applications, in: G. GML (Ed.), Springer Dordrecht Heidelberg London New York: Springer Science & Business Media, 2009.Google Scholar
  34. 34.
    M. Shinozuka, G. Deodatis, Simulation of stochastic processes by spectral representation, Appl. Mech. Rev. 44 (4) (1991) 191–204.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  • Yadong Zhou
    • 1
    • 2
  • Xiaochen Hang
    • 3
  • Shaoqing Wu
    • 1
  • Qingguo Fei
    • 1
    • 4
  • Natasa Trisovic
    • 5
  1. 1.Department of Engineering MechanicsSoutheast UniversityNanjingChina
  2. 2.Department of Civil and Environmental Engineering and Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  3. 3.Department of Aerospace Engineering and MechanicsUniversity of AlabamaTuscaloosaUSA
  4. 4.School of Mechanical EngineeringSoutheast UniversityNanjingChina
  5. 5.Faculty of Mechanical Engineering, Department of MechanicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations