Skip to main content
Log in

A comparative study of wave localization in locally resonant Thue—Morse, Rudin—Shapiro and Period-Doubling aperiodic structures

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The localization characteristics of the in-plane elastic waves in locally resonant aperiodic phononic crystals are examined in this study. In particular, the phononic crystals generated according to the Thue—Morse, Rudin—Shapiro and Period-Doubling sequences are theoretically investigated by using the extended transfer matrix method. For comparison, the binary and ternary locally resonant systems are considered, and their band structures are characterized by using the localization factors. Moreover, the influences of structural arrangement, material combination, incidence angle, number of components, length ratio, and random disorder on the band structures are also discussed. Some novel and interesting phenomena are observed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.M. Sigalas, C.M. Soukoulis, Elastic wave propagation through disordered and/or absorptive layered systems, Phys. Rev. B 51 (1995) 13961.

    Article  Google Scholar 

  2. M.M. Sigalas, E.N. Economou, Elastic and acoustic wave band structure, J. Sound Vib. 158 (1992) 377.

    Article  Google Scholar 

  3. M.S. Kushwaha, Classical band structure of periodic elastic composites, Int. J. Mod. Phys. B9 (1996) 977.

    Article  Google Scholar 

  4. Z. Liu, X.X. Zhang, Y.W. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Locally resonant sonic materials, Science 289 (2000) 1734.

    Article  Google Scholar 

  5. S.X. Yang, J.H. Page, Z.Y. Liu, M.L. Cowan, C.T. Chan, P. Sheng, Focusing of sound in a 3D phononic crystal, Phys. Rev. Lett. 93 (2004) 024301.

    Article  Google Scholar 

  6. S.J. Martinez-Sala R, J.V. Sanchez, V. Gomez, J. Llinares, F. Meseguer, Sound attenuation by sculpture, Nature 378 (1995) pp. 241–241.

    Article  Google Scholar 

  7. Z.L. Hou, X.J. Fu, Y.Y. Liu, Calculational method to study the transmission properties of phononic crystals, Phys. Rev. B 70 (2004) 014304.

    Article  Google Scholar 

  8. Y. Tanaka, Y. Tomoyasu, S. Tamura, Band structure of acoustic waves in phononic lattices: two-dimensional composites with large acoustic mismatch, Phys. Rev. B 62 (2000) 7378–7392.

    Article  Google Scholar 

  9. M. Kafesaki, E.N. Economou, Multiple-scattering theory for three-dimensional periodic acoustic composites, Phys. Rev. B 60 (1999) 11993.

    Article  Google Scholar 

  10. J.O. Vasseur, P.A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, D. Prevost, Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals, Phys. Rev. Lett. 86 (2001) 3012.

    Article  Google Scholar 

  11. C. Goffaux, J. Sanchez-Dehesa, Two-dimensional phononic crystals studied using a variational method: application to lattices of locally resonant materials, Phys. Rev. B 67 (2003) 144301.

    Article  Google Scholar 

  12. G. Wang, J.H. Wen, Y.Y. Liu, Lumped-mass method for the study of band structure in two-dimensional phononic crystals, Phys. Rev. B 69 (2004) 184302.

    Article  Google Scholar 

  13. K. Bertoldi, L. Wang, Mechanically tunable phononic band gaps in three-dimensional periodic elastomeric structures, Int. J. Solids Struct. 49 (2012) 2881–2885.

    Article  Google Scholar 

  14. J.J. Chen, Q. Wang, X. Han, Lamb wave transmission through one-dimensional three-component Fibonacci composite plates, Mod. Phys. Lett. B 24 (2010) 161–167.

    Article  Google Scholar 

  15. P.D. Sesion, E.I. Albuquerque, C. Chesman, V.N. Freire, Acoustic phonon transmission spectra in piezoelectric AlN/GaN Fibonacci phononic crystals, Eur. Phys. J. B 58 (2007) 379–387.

    Article  Google Scholar 

  16. P.D.C. King, T.J. Cox, Acoustic band gaps in periodically and quasiperiodically modulated waveguides, J. Appl. Phys. 102 (2007) 014902.

    Article  Google Scholar 

  17. H. Aynaou, E.H.EI. Boudouti, B Djafari-Rouhani, A Akjouj, V.R. Velasco, Propagation and localization of acoustic waves in Fibonacci phononic circuits, J. Phys. Condens. Matter. Phys. 17 (2005) 4245.

    Article  Google Scholar 

  18. L.C. Parsons, G.T. Andrews, Observation of hypersonic phononic crystal effects in porous silicon superlattices, Appl. Phys. Lett. 95 (2009) 241909.

    Article  Google Scholar 

  19. N.A. Gazi, G. Bernhard, Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: experiment and simulation, J. Appl. Phys. 116 (2014) 094903.

    Article  Google Scholar 

  20. Z.Z. Yan, C.Z. Zhang, Y.S. Wang, Wave propagation and localization in randomly disordered layered composites with local resonances, Wave Motion 47 (2010) 409–420.

    Article  MathSciNet  Google Scholar 

  21. Z.Z. Yan, C.Z. Zhang, Band structures and localization properties of aperiodic layered phononic crystals, Physica B 407 (2012) 1014–1019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhong Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Wang, Y. & Zhang, C. A comparative study of wave localization in locally resonant Thue—Morse, Rudin—Shapiro and Period-Doubling aperiodic structures. Acta Mech. Solida Sin. 30, 271–284 (2017). https://doi.org/10.1016/j.camss.2017.03.007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.camss.2017.03.007

Keywords

Navigation