Skip to main content
Log in

A size-dependent composite laminated skew plate model based on a new modified couple stress theory

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this study, a size-dependent composite laminated skew Mindlin plate model is proposed based on a new modified couple stress theory. This plate model can be viewed as a simplified couple stress theory in engineering mechanics. Governing equations and related boundary conditions are derived based on the principle of minimum potential energy. The Rayleigh—Ritz method is employed to obtain the numerical solutions of the center deflections of simply supported plates with different ply orientations. Numerical results show that the normalized center deflections obtained by the proposed model are always smaller than those obtained by the classical one, i.e. the present model can capture the scale effects of microstructures. Moreover, a phenomenon reveals that the ply orientation would make a significant influence on the magnitude of scale effects of composite laminated plates at micro scale. Additionally, the present model of thick skew plate can be degenerated to the model of Kirchhoff plate based on the modified couple stress theory by adopting the assumptions in Bernoulli—Euler beam and material isotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.A. Haque, M.T.A Saif, Strain gradient effect in nanoscale thin films, Acta Mater. 51 (11) (2003) 3053–3061.

    Article  Google Scholar 

  2. Z.C. Leseman, T.J Mackin, Indentation testing of axisymmetric freestanding nanofilms using a MEMS load cell, Sens. Actuators, A 134 (1) (2007) 264–270.

    Google Scholar 

  3. M.A. Haque, M.T.A Saif, Microscale materials testing using MEMS actuators, J. Microelectromech. Syst. 10 (1) (2001) 146–152.

    Article  Google Scholar 

  4. W.M.A.J. Andrew, Role of material microstructure in plate stiffness with relevance to microcantilever sensors, J. Micromech. Microeng. 15 (5) (2005) 1060.

    Article  Google Scholar 

  5. J.S. Stölken, A.G Evans, A microbend test method for measuring the plasticity length scale, Acta Mater. 46 (14) (1998) 5109–5115.

    Article  Google Scholar 

  6. Q Ma, D.R Clarke, Size dependent hardness of silver single crystals, J. Mater. Res. 10 (04) (1995) 853–863.

    Article  Google Scholar 

  7. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W Hutchinson, Strain gradient plasticity: theory and experiment, Acta Metall. Mater. 42 (2) (1994) 475–487.

    Article  Google Scholar 

  8. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids 51 (8) (2003) 1477–1508.

    Article  Google Scholar 

  9. M. Kouzeli, A Mortensen, Size dependent strengthening in particle reinforced aluminium, Acta Mater. 50 (1) (2002) 39–51.

    Article  Google Scholar 

  10. N.A. Fleck, J.W Hutchinson, Strain gradient plasticity, Adv. Appl. Mech. 33 (1997) 295–361.

    Article  Google Scholar 

  11. E. Cosserat, F Cosserat, Théorie Des Corps Déformables, Paris, 1909.

  12. Toupin R.A. Elastic materials with couple-stresses. 1962;11(1):385–414.

    Google Scholar 

  13. Mindlin R.D., Tiersten H.F. Effects of couple-stresses in linear elasticity. 1962;11(1):415–448.

    Google Scholar 

  14. W. Koiter, Couple-stresses in the theory of elasticity[J], Dictionary Geotechnical Engineering/wörterbuch Geotechnik 67 (1964) 1385.

    MathSciNet  MATH  Google Scholar 

  15. J. Altenbach, H. Altenbach, V.A. Eremeyev, On generalized Cosserat-type theories of plates and shells: a short review and bibliography, Arch. Appl. Mech. 80 (1) (2010) 73–92.

    Article  Google Scholar 

  16. C. Cosserat, F. Cosserat, Théorie des corps déformables, Nature 81 (2072) (1909) 67.

    MATH  Google Scholar 

  17. Neuber H. On the General Solution of Linear-Elastic Problems in Isotropic and Anisotropic Cosserat Continua. 1966, pp. 153–158.

    Chapter  Google Scholar 

  18. R.D. Mindlin, Influence of couple-stresses on stress concentrations, Exp. Mech. 3 (1) (1963) 1–7.

    Article  Google Scholar 

  19. F. Yang, A.C.M Chong, D.C.C Lam, P Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct. 39 (10) (2002) 2731–2743.

    Article  Google Scholar 

  20. S.K. Park, X Gao, Bernoulli–Euler beam model based on a modified couple stress theory, J. Micromech. Microeng. 16 (11) (2006) 2355.

    Article  Google Scholar 

  21. H.M. Ma, X.L. Gao, J.N Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, J. Mech. Phys. Solids 56 (12) (2008) 3379–3391.

    Article  MathSciNet  Google Scholar 

  22. G.C. Tsiatas, A new Kirchhoff plate model based on a modified couple stress theory, Int. J. Solids Struct. 46 (13) (2009) 2757–2764.

    Article  Google Scholar 

  23. L. Yin, Q. Qian, L. Wang, W Xia, Vibration analysis of microscale plates based on modified couple stress theory, Acta Mech. Solida Sin. 23 (5) (2010) 386–393.

    Article  Google Scholar 

  24. Chen W., Li X. A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model. 2014;84(3):323–341.

    Google Scholar 

  25. W. Chen, J Si, A model of composite laminated beam based on the global–local theory and new modified couple-stress theory, Compos. Struct. 103 (0) (2013) 99–107.

    Article  Google Scholar 

  26. C. Wanji, W. Chen, K.Y Sze, A model of composite laminated Reddy beam based on a modified couple-stress theory, Compos. Struct. 94 (8) (2012) 2599–2609.

    Article  Google Scholar 

  27. W. Chen, M Xu, L Li, A model of composite laminated Reddy plate based on new modified couple stress theory, Compos. Struct. 94 (7) (2012) 2143–2156.

    Article  Google Scholar 

  28. W. Chen, L. Li, M Xu, A modified couple stress model for bending analysis of composite laminated beams with first order shear deformation, Compos. Struct. 93 (11) (2011) 2723–2732.

    Article  Google Scholar 

  29. J. Bin, C Wanji, A new analytical solution of pure bending beam in couple stress elasto-plasticity: theory and applications, Int. J. Solids Struct. 47 (6) (2010) 779–785.

    Article  Google Scholar 

  30. C.M.C. Roque, D.S. Fidalgo, A.J.M. Ferreira, J.N Reddy, A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method, Compos. Struct. 96 (2013) 532–537.

    Article  Google Scholar 

  31. M. Mohammadabadi, A.R. Daneshmehr, M Homayounfard, Size-dependent thermal buckling analysis of micro composite laminated beams using modified couple stress theory, Int. J. Eng. Sci. 92 (2015) 47–62.

    Article  MathSciNet  Google Scholar 

  32. M. Mohammad Abadi, A.R Daneshmehr, An investigation of modified couple stress theory in buckling analysis of micro composite laminated Euler–Bernoulli and Timoshenko beams, Int. J. Eng. Sci. 75 (2014) 40–53.

    Article  MathSciNet  Google Scholar 

  33. J.N. Reddy, Mechanics of Laminated Composite plates: Theory and Analysis, CRC Press, Boca Raton, 1997.

    MATH  Google Scholar 

  34. J.N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D., Yang, W. & Chen, W. A size-dependent composite laminated skew plate model based on a new modified couple stress theory. Acta Mech. Solida Sin. 30, 75–86 (2017). https://doi.org/10.1016/j.camss.2016.12.001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.camss.2016.12.001

Keywords

Navigation