Acta Mechanica Solida Sinica

, Volume 30, Issue 1, pp 1–9 | Cite as

A new, direct approach toward modeling thermo-coupled fatigue failure behavior of metals and alloys

Article

Abstract

The objective of this study is two-fold. Firstly, new finite strain elastoplasticity models are proposed from a fresh standpoint to achieve a comprehensive representation of thermomechanical behavior of metals and alloys over the whole deformation range up to failure. As contrasted with the usual elastoplasticity models, such new models of much simpler structure are totally free, in the sense that both the yield condition and the loading—unloading conditions need not be introduced as extrinsic coercive conditions but are automatically incorporated as inherent constitutive features into the models. Furthermore, the new models are shown to be thermodynamically consistent, in a further sense that both the specific entropy function and the Helmholtz free energy function may be presented in explicit forms, such that the thermodynamic restriction stipulated by Clausius—Duhem inequality for the intrinsic dissipation may be identically satisfied. Secondly, it is then demonstrated that the thermo-coupled fatigue failure behavior under combined cyclic changes of stress and temperature may be derived as direct consequences from the new models. This novel result implies that the new model can directly characterize the thermo-coupled fatigue failure behavior of metals and alloys, without involving any usual damage-like variables as well as any ad hoc additional criteria for failure. In particular, numerical examples show that, under cyclic changes of temperature, the fatigue characteristic curve of fatigue life versus temperature amplitude may be obtained for the frst time from model prediction both in the absence and in the presence of stress. Results are in agreement with the salient features of metal fatigue failure.

Keywords

Thermo-coupled behavior Fatigue failure Finite deformations New elastoplasticity models Direct simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L Pook, Metal Fatigue, Springer, Berlin, 2007.MATHGoogle Scholar
  2. 2.
    Walker, K.P., Research and development program for non-linear structural modeling with advanced time-temperature dependent constitutive relationships. NASA CR-165553, 1981.Google Scholar
  3. 3.
    Swanson, G., Linask, I., and Nissley, D., Life prediction and constitutive models for engine hot section anisotropic materials program. NASA CR-174952, 1986.Google Scholar
  4. 4.
    P.L.C. Rolls-Royce, Predictive methods for combined cycle fatigue in gas turbine blades, in: European (Sixth RTD Framework Programme) Project, London, 2011.Google Scholar
  5. 5.
    J.W. Hutchinson, A.G. Evans, Mechanics of materials: top-down approaches to fracture, Acta Mater. 48 (2000) 125–135.CrossRefGoogle Scholar
  6. 6.
    B.N. Cox, H.J. Gao, D. Gross, D. Rittel, Modern topics and challenges in dynamic fracture, J. Mech. Phys. Solids 53 (2005) 565–596.MathSciNetCrossRefGoogle Scholar
  7. 7.
    D. Krajcinovic, Damage Mechanics, Elsevier, Amsterdam, 2003.MATHGoogle Scholar
  8. 8.
    M. Brünig, A continuum damage model based on experiments and numerical simulations—a review, in: H. Altenbach, T. Matsuda, D. Okumura (Eds.), From Creep Damage Mechanics to Homogenization Methods—A Liber Amicorum to Celebrate the Birthday of Nobutada Ohno, Advanced Structural Materials Series, Springer, Berlin, 2015, pp. 19–35.Google Scholar
  9. 9.
    S. Suresh, second ed, Fatigue of Materials, Cambridge University Press, Cambridge, 1998.CrossRefGoogle Scholar
  10. 10.
    N.E. Frost, K.J. Marsh, L.P. Pook, Metal Fatigue, Dover Publications, Inc., New York, 1999.Google Scholar
  11. 11.
    H. Xiao, Thermo-coupled elastoplasticity model with asymptotic loss of the material strength, Int. J. Plast. 63 (2014) 211–228.CrossRefGoogle Scholar
  12. 12.
    V. Firouzdor, M. Rajabi, E. Nejati, F. Khomamizadeh, Effect of microstructural constituents on the thermal fatigue life of A319 aluminum alloy, Mater. Sci. Eng. A 454 (2007) 528–535.CrossRefGoogle Scholar
  13. 13.
    Y.D. Huang, N. Hort, H. Dieringa, P. Maier, K.U. Kainer, Investigations on thermal fatigue of aluminum-and magnesium-alloy based composites, Int. J. Fatigue 28 (2006) 1399–1405.CrossRefGoogle Scholar
  14. 14.
    Y.G. Min, J. Bergström, X.C. Wu, L.G. Xu, Oxidation and thermal fatigue behaviors of two type hot work steels during thermal cycling, J. Iron Steel Res. Int. 20 (2013) 90–97.CrossRefGoogle Scholar
  15. 15.
    J. Jonas, B. Ilja, J. Erland, D. Rainer, L. Peter, Investigation on thermal fatigue of SnAgCu, Sn100C, and SnPbAg solder joints in varying temperature environments, Microelectron. Reliab. 54 (2014) 2523–2535.CrossRefGoogle Scholar
  16. 16.
    F. Szmytka, M. Salem, F. Rézaï-Aria, A. Oudin, Thermal fatigue analysis of automotive diesel piston: experimental procedure and numerical protocol, Int. J. Fatigue 73 (2015) 48–57.CrossRefGoogle Scholar
  17. 17.
    F. Ohmenhäuser, C. Schwarz, S. Thalmair, H.S. Evirgen, Constitutive modeling of the thermo-mechanical fatigue and lifetime behavior of the cast steel 1.4849, Mater. Des. 64 (2014) 631–639.CrossRefGoogle Scholar
  18. 18.
    T. Seifert, H. Riedel, Mechanism-based thermomechanical fatigue life prediction of cast iron. Part I: Models., Int. J. Fatigue 32 (2010) 1358–1367.CrossRefGoogle Scholar
  19. 19.
    E. Paffumi, K.F. Nilsson, Z. Szaraz, Experimental and numerical assessment of thermal fatigue in 316 austenitic steel pipes, Eng. Failure Anal. 47 (2015) 312–327.CrossRefGoogle Scholar
  20. 20.
    L. Rémy, F. Szmytka, L. Bucher, Constitutive models for bcc engineering iron alloys exposed to thermal-mechanical fatigue, Int. J. Fatigue 53 (2013) 2–14.CrossRefGoogle Scholar
  21. 21.
    K. Bauerbacha, M. Vormwalda, J. Rudolph, Fatigue assessment of thermal cyclic loading conditions based on a short crack approach, Proc. Eng. 2 (2013) 1569–1578.CrossRefGoogle Scholar
  22. 22.
    V. Levitin, High Temperature Strain of Metals and Alloys, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 1996.Google Scholar
  23. 23.
    R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
  24. 24.
    K. Otsuka, C.M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge, 1998.Google Scholar
  25. 25.
    J.F. Bell, The experimental foundation of solid mechanics, Encyclopedia of Physics, vol. VIa/1, Springer, Berlin, 1973.Google Scholar
  26. 26.
    Y.L. Bai, B. Dodd, Adiabatic Shear Localization, Pergamon, London, 1992.Google Scholar
  27. 27.
    H. Xiao, O.T. Bruhns, A. Meyers, Free rate-independent elastoplastic equations, ZAMM-J. Appl. Math. Mech. 94 (2014) 461–476.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Z.L. Wang, H. Xiao, A study of metal fatigue failure as inherent features of elastoplastic constitutive equations, in: H. Altenbach, T. Matsuda, D. Okumura (Eds.), From Creep Damage Mechanics to Homogenization Methods-A Liber Amicorum to Celebrate the Brithday of Nobutada Ohno, Advanced Structural Materials Series, Springer, Berlin, 2015, pp. 529–540.Google Scholar
  29. 29.
    Open image in new window, 2016,37(2): 245–251 Z.L. Wang, H. Xiao, X.M. Wang, Direct simulation of metal fatigue failure based on new elastoplastic model, Chin. Q. Mech. 37 (2) (2016) 245–251.Google Scholar
  30. 30.
    H. Xiao, O.T. Bruhns, A. Meyers, Elastoplasticity beyond small deformations, Acta Mech. 182 (2006) 31–111.CrossRefGoogle Scholar
  31. 31.
    O.T. Bruhns, H. Xiao, A. Meyers, Self-consistent {E}ulerian rate type elasto-plasticity models based upon the logarithmic stress rate, Int. J. Plast. 15 (1999) 479–520.CrossRefGoogle Scholar
  32. 32.
    O.T. Bruhns, H. Xiao, A. Meyers, Some basic issues in traditional Eulerian formulations of finite elastoplasticity, Int. J. Plast. 19 (2003) 2007–2026.CrossRefGoogle Scholar
  33. 33.
    O.T. Bruhns, H. Xiao, A. Meyers, A weakened form of Ilyushin’s postulate and the structure of self-consistent Eulerian finite elastoplasticity, Int. J. Plast. 21 (2005) 199–219.CrossRefGoogle Scholar
  34. 34.
    H. Xiao, O.T. Bruhns, A. Meyers, The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate, Proc. R. Soc. London, Ser. A 456 (2000) 1865–1882.MathSciNetCrossRefGoogle Scholar
  35. 35.
    H. Xiao, O.T. Bruhns, A. Meyers, A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and the deformation gradient, Int. J. Plast. 16 (2000) 143–177.CrossRefGoogle Scholar
  36. 36.
    H. Xiao, O.T. Bruhns, A. Meyers, Thermodynamic laws and consistent Eulerian formulations of finite elastoplasticity with thermal effects, J. Mech. Phys. Solids 55 (2007) 338–365.MathSciNetCrossRefGoogle Scholar
  37. 37.
    H. Xiao, O.T. Bruhns, A. Meyers, Logarithmic strain, logarithmic spin and logarithmic rate, Acta Mech. 124 (1997) 89–105.MathSciNetCrossRefGoogle Scholar
  38. 38.
    H. Xiao, Pseudo-elastic hysteresis out of recoverable finite elastoplastic flows, Int. J. Plast. 41 (2013) 82–96.CrossRefGoogle Scholar
  39. 39.
    H. Xiao, An explicit, direct simulation of multi-axial finite strain inelastic behavior for polymeric solids, Int. J. Plast. 71 (2015) 146–169.CrossRefGoogle Scholar
  40. 40.
    H. Xiao, O.T. Bruhns, A. Meyers, Finite elastoplastic J2 -flow models with strain recovery effects, Acta Mech. 210 (2010) 13–25.CrossRefGoogle Scholar
  41. 41.
    H. Xiao, O.T. Bruhns, A. Meyers, Phenomenological elastoplasticity view on strain recovery loops characterizing shape memory materials, ZAMM-J. Appl. Math. Mech. 90 (2010) 544–564.MathSciNetCrossRefGoogle Scholar
  42. 42.
    H. Xiao, O.T. Bruhns, A. Meyers, Thermo-induced plastic flows and shape memory effects, Theor. Appl. Mech. 38 (2011) 155–207.MathSciNetCrossRefGoogle Scholar
  43. 43.
    H. Xiao, An explicit, straightforward approach to modeling SMA pseudo-elastic hysteresis, Int. J. Plast. 53 (2014) 228–240.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2014

Authors and Affiliations

  • Zhaoling Wang
    • 1
    • 2
  • Hao Li
    • 1
  • Zhengnan Yin
    • 1
  • Heng Xiao
    • 1
  1. 1.Shanghai Institute of Applied Mathematics and Mechanics and State Key Laboratory for Advanced Special SteelsShanghai UniversityShanghaiChina
  2. 2.School of Mathematics and Information SciencesWeifang UniversityWeifangChina

Personalised recommendations