Advertisement

Acta Mechanica Solida Sinica

, Volume 30, Issue 1, pp 11–19 | Cite as

Stochastic averaging of quasi integrable and resonant Hamiltonian systems excited by fractional Gaussian noise with Hurst index 1/2 <H < 1

  • Q. F. Lü
  • M. L. Deng
  • W. Q. Zhu
Article

Abstract

A stochastic averaging method of quasi integrable and resonant Hamiltonian systems under excitation of fractional Gaussian noise (fGn) with the Hurst index 1/2 < H < 1 is proposed. First, the definition and the basic property of fGn and related fractional Brownian motion (fBm) are briefly introduced. Then, the averaged fractional stochastic differential equations (SDEs) for the first integrals and combinations of angle variables of the associated Hamiltonian systems are derived. The stationary probability density and statistics of the original systems are then obtained approximately by simulating the averaged SDEs numerically. An example is worked out to illustrate the proposed stochastic averaging method. It is shown that the results obtained by using the proposed stochastic averaging method and those from digital simulation of original system agree well.

Keywords

Quasi integrable and resonant Hamiltonian system Fractional Brownian motion Fractional Gaussian noise Stochastic averaging method Internal resonant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Karlin, H. Taylor, A Second Course in Stochastic Processes, Academic Press, New York, 1981.zbMATHGoogle Scholar
  2. 2.
    W.Q. Zhu, Stochastic Vibration, Science Press, Beijing, 1998.Google Scholar
  3. 3.
    W.Q. Zhu, Nonlinear Stochastic Dynamics and control: Framework of Hamiltonian theory, Science Press, Beijing, 2003.Google Scholar
  4. 4.
    A.M. Yaglom, Some classes of random fields in n-dimensional space, related to stationary random processes, Theory Probab. Its Appl 2 (3) (1957) 273–320.CrossRefGoogle Scholar
  5. 5.
    F. Biagini, Y. Hu, B. Øksendal, T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer, London, 2008.CrossRefGoogle Scholar
  6. 6.
    B.B. Mandelbrot, J.W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (4) (1968) 422–437.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Y.S. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer, Berlin, 2008.CrossRefGoogle Scholar
  8. 8.
    Y. Hu, B. Øksendal, Fractional white noise calculus and applications to finance, Infin. Dimens. Anal. Quantum Probab. Relat. Topics 6 (01) (2003) 1–32.MathSciNetCrossRefGoogle Scholar
  9. 9.
    W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, On the self-similar nature of Ethernet traffic, IEEE/ACM Trans. Networking 2 (1) (1994) 1–15.CrossRefGoogle Scholar
  10. 10.
    P. Doukhan, G. Oppenheim, M.S. Taqqu, Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, 2003.zbMATHGoogle Scholar
  11. 11.
    P. Cheridito, H. Kawaguchi, M. Maejima, Fractional Ornstein-Uhlenbeck processes, Electron. J. Probab. 8 (3) (2003) 1–14.MathSciNetzbMATHGoogle Scholar
  12. 12.
    T. Kaarakka, P. Salminen, On fractional Ornstein-Uhlenbeck processes, Commun. Stochastic Anal. 5 (1) (2011) 121–133.MathSciNetzbMATHGoogle Scholar
  13. 13.
    R.C. Hu, W.Q. Zhu, Stochastic optimal control of MDOF nonlinear systems under combined harmonic and wide-band noise excitations, Nonlinear Dyn. 79 (2) (2015) 1115–1129.MathSciNetCrossRefGoogle Scholar
  14. 14.
    C.S. Feng, W.Q. Zhu, Stochastic optimal control of strongly nonlinear systems under wide-band random excitation with actuator saturation, Acta Mech. Solida Sin. 21 (2) (2008) 116–126.MathSciNetCrossRefGoogle Scholar
  15. 15.
    W.Q. Zhu, Stochastic averaging methods in random vibration, Appl. Mech. Rev. 41 (5) (1988) 189–199.CrossRefGoogle Scholar
  16. 16.
    W.Q. Zhu, Nonlinear stochastic dynamics and control in Hamiltonian formulation, Appl. Mech. Rev. 59 (4) (2006) 230–248.MathSciNetCrossRefGoogle Scholar
  17. 17.
    W.Q. Zhu, Z.L. Huang, Y.Q. Yang, Stochastic averaging of quasi-integrable Hamiltonian systems, ASME J. Appl. Mech. 64 (4) (1997) 975–984.MathSciNetCrossRefGoogle Scholar
  18. 18.
    W.Q. Zhu, Y.Q. Yang, Stochastic averaging of quasi-nonintegrable-Hamiltonian systems, ASME J. Appl. Mech. 64 (1) (1997) 157–164.MathSciNetCrossRefGoogle Scholar
  19. 19.
    M.L. Deng, W.Q. Zhu, Stochastic averaging of quasi-non-integrable Hamiltonian systems under fractional Gaussian noise excitation, Nonlinear Dyn. 83 (1–2) (2016) 1015–1027.MathSciNetCrossRefGoogle Scholar
  20. 20.
    V.M. Sithi, S.C. Lim, On the spectra of Riemann-Liouville fractional Brownian motion, J. Phys. A: Math. Gen. 28 (11) (1995) 2995.MathSciNetCrossRefGoogle Scholar
  21. 21.
    S.C. Lim, S.V. Muniandy, Self-similar Gaussian processes for modeling anomalous diffusion, Phys. Rev. E 66 (2) (2002) 021114.CrossRefGoogle Scholar
  22. 22.
    G. Rangarajan, M. Ding, Processes with Long-Range Correlations: Theory and Applications, Springer-Verlag, Berlin, 2003.CrossRefGoogle Scholar
  23. 23.
    M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction, John Wiley, New York, 1989.zbMATHGoogle Scholar
  24. 24.
    Y. Xu, R. Guo, W. Xu, A limit theorem for the solutions of slow-fast systems with fractional Brownian motion, Theor. Appl. Mech. Lett. 4 (1) (2014) 013003.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Y. Xu, R. Guo, D. Liu, H.Q. Zhang, J.Q. Duan, Stochastic averaging principle for dynamical systems with fractional Brownian motion, AIMS Dis. Continuous Dyn. Syst., Ser. B 19 (4) (2014) 1197–1212.MathSciNetCrossRefGoogle Scholar
  26. 26.
    W.Q. Zhu, M.L. Deng, Optimal bounded control for minimizing the response of quasi-integrable Hamiltonian systems, Int. J. Nonlinear Mech. 39 (9) (2004) 1535–1546.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2014

Authors and Affiliations

  1. 1.Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceZhejiang UniversityHangzhouChina

Personalised recommendations