Obtaining and characterization of anthocyanins from Euterpe oleracea (açaí) dry extract for nutraceutical and food preparations

Abstract

The main constituents of the Euterpe oleracea Mart., Arecaceae, fruits (açaí) are anthocyanins. This paper aimed to standardize the extraction process and characterize an anthocyanin-rich dry extract obtained from this fruit. A 23 full factorial design was used. The volumes of ethanol 92% and acetic acid and the extraction time were used as factors. Total solids and anthocyanins content were used as feedback. The dry extract was obtained by freeze-drying. The content of anthocyanins was determined spectrophotometrically. Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimeter, Thermogravimetry, Scanning Electron Microscopy, and Atomic Absorption Spectrometry were used for characterizingthe dry extract. The DPPH method was used for evaluating radical scavenging activity. The extraction conditions were established. The most influent factor was the volume of acetic acid. The dry extract moisture content was equal to 1.39 ± 0.25%, the evaporation residue 97.25 ± 1.28%, total ashes 0.62 ± 0.12%, and the anthocyanin content was 61.75 ± 3.28%. The elemental composition shows the presence of manganese 4.85 ppm, iron 1.62 ppm, zinc 0.05, copper 1.38 ppm, calcium 1.01 ppm, cadmium 0.003 ppm, nickel 0.37 ppm, and lead 0.38 ppm. The dried extract IC50 estimated by the radical scavenging assay with DPPH was 31.25 ± 2.31 ppm. The optimal extraction conditions were: the volume of ethanol 92%: 400 ml; volume of acetic acid: 75 ml; an extraction time: 4h.

References

  1. Ahmed, J.K., Amer, Z.J.A., Al-Bahate, M.J.M., 2014. Effect of chlorophyll and antho-cyanin on the secondary bonds of polymethyl methacrylate (PMMA). Int. J. Tech. Res. Appl. 2, 73–80.

    Google Scholar 

  2. Argota, P.G., Argota, C.H., Fernández, H.A., 2014. Determinación de Cu, Zn, Pb y Cd por espectrometría de emisión atómica con plasma inductivamente acoplado en aguas y sedimentos del ecosistema San Juan, Santiago de Cuba. Rev. Cub. Química. 26, 85–93.

    Google Scholar 

  3. Avula, B., Wang, Y.H., Smillie, T.J., Khan, I.A., 2010. Extraction and analysis of anthocyanins from açaí (Euterpe oleraceamart.) berries and dietary supplements using UPLC and HPLC methods. Planta Med. 76, https://doi.org/10.1055/s-0030-1251789.

  4. Bobbio, F.O., Druzian, J.I., Abrão, P.A., Bobbio, P.A., Fadelli, S., 2000. Identificação e quantificação das antocianinas do fruto do açaizeiro (Euterpe oleracea) Mart. Food Sci. Tech-Brazil. 20, 388–390.

    CAS  Article  Google Scholar 

  5. Blois, M.S., 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199–1200.

    CAS  Article  Google Scholar 

  6. Cheminat, A., Brouillard, R., 1986. PMR investigation of 3-O-(a-D-glucosil)-malvidin structural transformations in aqueous solutions. Tetrahedron Lett. 27, 4457–4460.

    CAS  Article  Google Scholar 

  7. Dai, J., Mumper, R.J., 2010. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352.

    CAS  Article  PubMed Central  Google Scholar 

  8. Datt, J.D., 2012. Herbal Drugs and Fingerprints: Evidence-based Herbal Drugs, 1st ed. Springer, New York.

    Google Scholar 

  9. Escalona-Arranz, J.C., Perez-Roses, R., Rodríguez-Amado, J., Morris-Quevedo, H.J., Mwasi, L.B., Cabrera-Sotomayor, O., Machado-Garcia, C., Fong-Lorez, O., Afonso-Castillo, A., Puente-Zapata, E., 2015. Antioxidant and toxicological evaluation of a Tamarindus indica L. Leaf fluid extract. Nat. Prod. Res. 30, 1–6.

    Google Scholar 

  10. Fernandes, F.H.A., Santana, C.P., Santos, R.L., Correia, L.P., Conceição, M.M., Macêdo, R.O., Medeiros, A.C.D., 2013. Thermal characterization of dried extract of medicinal plant by DSC and analyticaltechniques. J. Therm. Anal. Calorim. 113, 443–447.

    CAS  Article  Google Scholar 

  11. Gabrielson, J., Lindberg, N., Lundtedt, T., 2002. Multivariate methods in pharmaceuticalapplications. J. Chemom. 16, 141–160.

    Article  Google Scholar 

  12. Gouvêa, A.C.M.S., Araujo, M.C.P., Schulz, D.F., Pacheco, S., Godoy, R.L.O., Cabral, L.M.C., 2012. Anthocyanins standards (cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside) isolation from freeze-dried açaí (Euterpe oleraceae Mart.) by HPLC. Food Sci. Tech-Brazil 32, 43–46.

    Article  Google Scholar 

  13. Grayer, R.J., 1988. The anthocyanins. In: Harborne, J.B. (Ed.), The Flavonoids: Advances in Research Since 1980. Chapman and Hall, London, pp. 1–20.

    Google Scholar 

  14. Heinrich, M., Dhanji, T., Casselman, I., 2011. Açai (Euterpe oleracea Mart.) - a phytochemical and pharmacological assessment of the species’ health claims. Phytochem. Lett. 4, 10–21.

    CAS  Article  Google Scholar 

  15. Jothy, S.L., Yeng, C., Sasidharan, S., 2013. Chromatographic and spectral fingerprinting of Polyalthia longifolia, a source of phytochemicals. BioResources 8, 5102–5119.

    Article  Google Scholar 

  16. Kacurakova, M., Mathlouthi, M., 2007. FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond. Carbohyd. Res. 284, 145–157.

    Article  Google Scholar 

  17. Liazid, A., Palma, M., Brigui, J., Barroso, CG., 2007. Investigation on phenolic compounds stability during microwave-assistedextraction. J. Chromatogr. A 1140, 29–34.

    CAS  Article  PubMed Central  Google Scholar 

  18. Matheus, M.E., de Oliveira Fernandes, S.B., Silveira, C.S., Rodrigues, V.P., de Sousa Menezes, F., Fernandes, P.D., 2006. Inhibitory effects of Euterpe oleracea Mart. On nitric oxide production and iNOSexpression. J. Ethnopharmacol. 107, 291–296.

    Article  PubMed Central  Google Scholar 

  19. Montgomery, C., George, CR., 2003. Applied Statistics and Probability for Engineers, 3rded. J. hn Wiley & Sons, Singapore.

    Google Scholar 

  20. Petenatti, E.M., Gette, MA, Camí, G.E., Popovich, M.C., Marchevsky, E.J., Del Vitto, LA., 2014. Micrografía cuantitativa y perfiles de HPLC y FTIR de Melissa officinalis y Nepeta cataria (Lamiaceae) de Argentina. Rev. Fca. Uncuyo. 46, 15–27.

    Google Scholar 

  21. Pompeu, D.R., Silva, V., Rogez, H., 2009. Optimization of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using Response Surface Methodology. Bioresour. Technol. Rep. 100, 6076–6082.

    CAS  Article  Google Scholar 

  22. Revilla, E., Ryan, J.M., Martin-Ortega, G., 1998. Comparison of several procedures used for the extraction of anthocyanins from redgrapes. J. Agr. Food Chem 46, 4592–4597.

    CAS  Article  Google Scholar 

  23. Rogez, H., 2000. Açaí: preparo, composição e melhoramento da conservação, 1st ed. Edufpa, Belém.

    Google Scholar 

  24. Sharapin, N., 2000. Fundamentos de tecnología de productos fitoterapéuticos, 1st ed. Secretaría Ejecutiva Convenio Andrés Bello, Santa Fe de Bogotá.

    Google Scholar 

  25. Schauss, A.G., 2015. The effect of açai (Euterpe spp.) Fruit pulp on brain health and performance. In: Watson, R.R., Preedy, V.R. (Eds.). Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease:Prevention and Therapy. Academic Press, London.

    Google Scholar 

  26. Schauss, A.G., 2016. Advances in the study of the health benefits and mechanisms of action of the pulp and seed of the amazonian palm fruit, Euterpe oleracea mart., Known as açai,. In: Watson, R.R., Preedy, V.R. (Eds.). Fruits, Vegetables, and Herbs. Academic Press, Oxford, pp. 177–220.

    Google Scholar 

  27. Schauss, A.G., Wu, R.L., Ou, B., Patel, D., Huang, D., Kababick, J.P., 2006a. Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry Euterpe oleracea Mart. (açai). J. Agr. Food Chem 54, 8598–8603.

    CAS  Article  Google Scholar 

  28. Schauss, A.G., Wu, X., Prior, R.L., Ou, B., Huang, D., Owens, J., Agarwal, A., Jensen, G.S., Hart, A.N., Shanbrom, E., 2006b. Antioxidant capacity and other bioactivities of the freeze-dried Amazonian palm berry, Euterpe oleracea Mart. (açaí). J. Agr. Food Chem 54, 8604–8610.

    CAS  Article  Google Scholar 

  29. Spiritu, SAP., Silva, R.C., Soares, F.A.S.M., Anjos, D., Gioielli, L.A., Oliveira, M.N., 2010. Açai pulp addition improves fatty acid profile and probiotic viability in yoghurt. Int. Dairy J. 20, 415–422.

    Article  Google Scholar 

  30. Stój, A., Malik, A., Targonski, Z., 2006. Comparative analysis of anthocyanin composition of juices obtained from selected species of berry fruits. Pol. J. Food Nutri. Sci. 15/56, 401–407.

    Google Scholar 

  31. Teixeira-Neto, A.A., Shiguihara, A.L., Izumi, CM., Bizeto, M.A., Leroux, F., Temperini, M.L., Constantino, R., 2009. A hybrid material assembled by anthocyanins from açaí fruit intercalated between niobium lamellar oxides. Dalton Trans. 7, 4136–4145.

    Article  Google Scholar 

  32. Thi, N.D., Hwang, E.S., 2016. Effects of drying methods on contents of bioactive compounds and antioxidant activities of black chokeberries (Aronia melanocarpa). Food Sci. Biotechnol. 25, 55–61.

    CAS  Google Scholar 

  33. Tonon, R.V., Brabet, C., Hubinger, M.D., 2010. Anthocyanin stability and antioxidant activity of spray-dried açaí (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Res. Int. 43, 907–914.

    CAS  Article  Google Scholar 

  34. United States Pharmacopeial Convention, 2012. United States Pharmacopoeia National Formulary, thirty ed. United States Pharmacopeial, New York.

    Google Scholar 

  35. Waksmundzka, H.M., Sherma, J., 2011. High-performance Liquid Chromatography in Phytochemical Analysis, 1st ed. CRC Taylor and Francis Group, Boca Raton, Florida.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to José Carlos Tavares Carvalho.

Additional information

Authors contribution

HRS, DCA, ALP., JRRA, MBS, AVTLTS, JOCSJ. were responsible for investigation, methodology, and validation. AMF and HOC were responsible for data curation and formal analysis.JCTC was responsible for the supervision, writing - original draft and writing -review and editing.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva, H.R., de Assis, D.d.C., Prada, A.L. et al. Obtaining and characterization of anthocyanins from Euterpe oleracea (açaí) dry extract for nutraceutical and food preparations. Rev. Bras. Farmacogn. 29, 677–685 (2019). https://doi.org/10.1016/j.bjp.2019.03.004

Download citation

Keywords

  • Açai
  • Anthocyanins
  • Antioxidant
  • Dry extract
  • Extraction
  • Factorial design