Determination of phenolic profile by HPLC-ESI-MS/MS, antioxidant activity, in vitro cytotoxicity and anti-herpetic activity of propolis from the Brazilian native bee Melipona quadrifasciata

Abstract

Propolis is a rich source of bioactive molecules made by bees by collecting an infinite variety of secondary metabolites from plants. This study determined the chromatographic and mass spectrometry profile along with the biological activity of propolis produced by the native Brazilian bee Melipona quadrifasciata. A hydroalcoholic crude extract was prepared and partitioned in solvents of different polarities, generating aqueous, dichloromethane, ethyl acetate, butanol and insoluble fractions. The phenolic and flavonoid content was also determined in crude aqueous and methanolic extracts as well. The antioxidant activity was determined by three different methods and correlated with the phenolic and flavonoid content. Extracts and fractions were tested against the herpes simplex virus type 1, and the cytotoxicity was evaluated in fibroblast L929 cells. The chromatographic and mass spectrometry analysis revealed the presence of catechin, epicatechin, aromadendrin, naringenin, pinocembrin and p-coumaric acid. The methanolic extract, ethyl acetate fraction and insoluble fraction possess higher phenolic and flavonoid content along with better antioxidant activities. The ethyl acetate and butanol fractions, along with the FM14 and FM45 subfractions demonstrated better viral inhibition, with 50% inhibitory concentrations of 90.5, 294, 188 and 58.5 μgmH, respectively. Among these, the ones presenting the best selectivity index were the ethyl acetate and FM45 fractions, with a pronounced virucidal effect. The methanolic extract stood out in the antioxidant activities and showed no cytotoxicity bellow 125 μg ml−1, exhibiting the most promising biological activity. Although this propolis seems to act in the early stages of herpetic infections, it is still difficult to correlate this activity with a single constituent of this complex mixture, suggesting a synergism in the extract components. To our knowledge, this is the first study of its kind with this propolis type.

References

  1. Alves, C.Q., David, J.M., David, J.P., Bahia, M.V., Aguiar, R.M., 2010. Methods for determination of in vitro antioxidant activity for extracts and organic compounds. Quim. Nova 33, 2202–2210.

    CAS  Google Scholar 

  2. Alves, E.A., Guimarães, A.C.R., 2010. Cultivo celular. In: Molinaro, E.M., Caputo, L.F.G., Amendoeira, M.R.R. (Eds.), Conceitos e Métodos para a Formação de Professionals em Laboratórios de Saude, vol. 3. EPSJV, Rio de Janeiro, pp. 1215–1253.

    Google Scholar 

  3. Aminimoghadamfarouj, N., Nematollahi, A., 2017. Propolis diterpenes as a remark-able bio-source for drug discovery development: a review. Int. J. Mol. Sci. 18, https://doi.org/10.3390/ijmsl8061290.

  4. Amoros, M., Simões, C.M., Girre, L., Sauvager, F., Cormier, M., 1992. Synergistic effect of flavones and flavonols against herpes simplex virus type 1 in cell culture. Comparison with the antiviral activity of propolis. J. Nat. Prod. 55, 1732–1740.

    PubMed  CAS  Google Scholar 

  5. Amoros, M., Lurton, E., Boustie, J., Girre, L., Sauvager, F., Cormier, M., 1994. Comparison of the anti-herpes simplex virus activities of propolis and 3-methyl-but-2-enyl caffeate. J. Nat. Prod. 57, 644–647.

    PubMed  CAS  Google Scholar 

  6. Anagnostopoulou, M.A., Kefalas, P., Papageorgiou, V.P., Assimopoulou, A.N., Boskou, D., 2006. Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem. 94, 19–25.

    CAS  Google Scholar 

  7. Bankova, V., Popova, M., Trusheva, B., 2014a. Propolis volatile compounds: chemical diversity and biological activity: a review. Chem. Cent. J. 8, https://doi.org/10.1186/1752-153X-8-28.

  8. Bankova, V., Galabov, A.S., Antonova, D., Vilhelmova, N., Di Perri, B., 2014b. Chemical composition of Propolis Extract ACF* and activity against herpes simplex virus. Phytomedicine 21, 1432–1438.

    PubMed  CAS  Google Scholar 

  9. Banskota, A.H., Tezuka, T., Adnyana, K., Midorikawa, K., Matsushige, K., Message, D., Huertas, A.A., Kadota, S., 2000. Cytotoxic, hepatoprotective and free radical scavenging effects of propolis from Brazil, Peru, the Netherlands and China. J. Ethnopharmacol. 72, 239–246.

    PubMed  CAS  Google Scholar 

  10. Banskota, A.H., Tezuka, Y., Kadota, S., 2001. Recent progress in pharmacological research of propolis. Phytother. Res. 15, 561–571.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Bonamigo, T., Campos, J.F., Alfredo, T.M., Balestieri, J.B.P., Cardoso, C.A.L., Paredes-Gamero, E.J., de Picoli Souza, K., dos Santos, E.X., 2017. Antioxidant, cytotoxic, and toxic activities of propolis from two native bees in Brazil: Scaptotrig-ona depilis and Melipona quadri/asciata anthidioides. Oxid. Med. Cell. Longev., https://doi.org/10.1155/2017/1038153.

    Google Scholar 

  12. Cavin, A., Hostettmann, K., Dyatmyko, W., Potterat, O., 1998. Antioxidant and lipophilic constituents of Tinospora crispa. Planta Med. 64, 393–396.

    CAS  Google Scholar 

  13. Chiaradia, M.C., Collins, C.H., Jardim, I.C.S.F., 2008. O estado da arte da cromatografía associada á espectrometria de massas acoplada à espectrometria de massas na análise de compostos tóxicos em alimentos. Quim. Nova 31, 623–636.

    CAS  Google Scholar 

  14. da Silva, R.O., Andrade, V.M., Bullé Rêgo, E.S., Azevedo Dória, G.A., Lima, B.S., da Silva, F.A., de Souza Araujo, A.A., de Albuquerque Junior, R.L.C., Cordeiro Cardoso, J., Zanardo Gomes, M., 2015. Acute and sub-acute oral toxicity of Brazilian red propolis in rats. J. Ethnopharmacol. 170, 66–71.

    PubMed  Google Scholar 

  15. de Castro Ishida, V.F., Negri, G., Salatino, A., Bandeira, M.F.C.L., 2011. A new type of Brazilian propolis: prenylated benzophenones in propolis from Amazon and effects against cariogenic bacteria. Food Chem. 125, 966–972.

    Google Scholar 

  16. dos Santos, L., Hochheim, S., Boeder, A.M., Kroger, A., Tomazzoli, M.M., Dal Pai Neto, R., Maraschin, M., Guedes, A., de Cordova, C.M.M., 2017. Chemical characterization, antioxidant, cytotoxic and antibacterial activity of propolis extracts and isolated compounds from the Brazilian stingless bees Melipona quadri/asciata and Tetragonisca angustuia. J. Apic. Res. 56, 543–558.

    Google Scholar 

  17. Faccin-Galhardi, L.C., Yamamoto, K.A., Ray, S., Ray, B., Carvalho Linhares, R.E., Nozawa, C., 2012. The in vitro antiviral property of Azadirachta indica polysaccharides forpoliovirus.J. Ethnopharmacol. 142, 86–90.

    CAS  Google Scholar 

  18. González-Burgos, E., Gómez-Serranillos, M.P., 2012. Terpene compounds in nature: a review of their potential antioxidant activity. Curr. Med. Chem. 19, 5319–5341.

    PubMed  Google Scholar 

  19. Groot, A.C., 2013. Propolis: a review of properties, applications, chemical composition, contact allergy, and other adverse effects. Dermatitis 24, 263–282.

    Google Scholar 

  20. Ito, J., Chang, F.R., Wang, H.K., Park, Y.K., Ikegaki, M., Kilgore, N., Lee, K.H., 2001. Anti-AIDS agents 48.(1) Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis. J. Nat. Prod. 64, 1278–1281.

    CAS  Google Scholar 

  21. Lopes, N., Ray, S., Espada, S.F., Bomfim, W.A., Ray, B., Faccin-Galhardi, L.C., Linhares, R.E.C., Nozawa, C., 2017. Green seaweed Enteromorpha compressa (Chlorophyta, Ulvaceae) derived sulphated polysaccharides inhibit herpes simplex virus. Int. J. Biol. Macromol. 102, 605–612.

    PubMed  CAS  Google Scholar 

  22. López, B.C., Schmidt, E.M., Eberlin, M.N., Sawaya, A.C., 2013. Phytochemical markers of different types of red propolis. Food Chem. 146, 174–180.

    PubMed  Google Scholar 

  23. Li, M., Han, B., Liu, W., 2011. Preparation and properties of a drug release membrane of mitomycin C with JV-succinyl-hydroxyethyl chitosaaj. Mater. Sci. Mater. Med. 22, 2745–2755.

    CAS  Google Scholar 

  24. Lu, Y., Slomberg, D.L., Schoenflsch, M.H., 2014. Nitric oxide-releasing chitosan oligosaccharides as antibacterial agents. Biomaterials 35, 1716–1724.

    PubMed  CAS  Google Scholar 

  25. Lyu, S.Y., Rhim, J.Y., Park, W.B., 2005. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch. Pharm. Res. 28, 1293–1301.

    CAS  Google Scholar 

  26. Machado, C.S., Mokochinski, J.B., Onofre de Lira, T., de Cassia Evangelista de Oliveira, F., Cardoso, M.V., Ferreira, R.G., Helena, A.C., Sawaya, F., Ferreira, A.G., Pessoa, C., Cuesta-Rubio, O., Monteiro, M.C, Soares De Campos, M., Torres, Y.R., 2016. Comparative study of chemical composition and biological activity of yellow, green, brown, and red Brazilian propolis. Evid. Based Complement. Altera Med., https://doi.org/10.1155/2016/6057650.

    Google Scholar 

  27. Malla, S., Koffas, M.A.G., Kazlauskas, R.J., Kim, B.C., 2012. Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid in Escherichia co/i. Appi. Environ. Microbiol. 78, 684–694.

    CAS  Google Scholar 

  28. Marcucci, M.C., 1995. Propolis: chemical composition, biological properties and therapeutic activity. Apidologie 26, 83–99.

    CAS  Google Scholar 

  29. Martins, M.D., Marques, M.M., Bussadori, S.K., Mesquita-Ferrari, R.A., Pavesi, V.C.S., Wadt, N.V., Fernandes, K.P., 2009. In vitro cytotoxicity of arnica brasileira (Solidago microglossa) and arnica paulista (Porophyllum ruderale). ConScientia Saude 8, 99–104.

    Google Scholar 

  30. Mokbel, M.S., Hashinaga, F., 2006. Evaluation of the antioxidant activity of extracts from buntan (Citrus grandis Osbeck) fruit tissues. Food Chem. 94, 529–534.

    CAS  Google Scholar 

  31. Mosmann, T., 1983. Rapid colorimetrie assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63.

    CAS  Google Scholar 

  32. Noureddine, H., Hage-Sleimanb, R., Wehbi, B., Fayyad-Kazand, H., Hayar, S., Tra-boulssie, M., Alyamani, O.A., Faourg, W.H., ElMakhouraet, Y., 2017. Chemical characterization and cytotoxic activity evaluation of Lebanese propolis. Biomed. Pharmacother. 95, 298–307.

    PubMed  CAS  Google Scholar 

  33. Nunes, C.A., Guerreiro, M.C., 2012. Characterization of Brazilian green propolis throughout the seasons by heads pace GC/MS and ESI-MS. J. Sci. Food Agric. 92, 433–438.

    CAS  Google Scholar 

  34. Park, H., Bae, S.H., Park, Y., Choi, H.S., Suh, HJ., 2015. Lipase-mediated lipid removal from propolis extract and its antiradical and antimicrobial activity. J. Sci. Food Agric. 95, 1697–1705.

    PubMed  CAS  Google Scholar 

  35. Peter, C.M., Picoli, T., Zani, J.L., Latosinski, G.S., de Lima, M., Vargas, G.D., Hübner, S.O., Fischer, G., 2017. Antiviral and virucidal activity of hydroalcoholic extracts of propolis brown, green and jataí bees (Tetragonisca angustuia) against Bovine Herpes virus Type-1 (BoHV-1) and Bovine Viral Diarrhea Virus (BVDV). Pesq. Vet. Bras. 37, 667–675.

    Google Scholar 

  36. Price, M.L., Butler, L.G., 1977. Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J. Agric. Food Chem. 25, 1268–1273.

    CAS  Google Scholar 

  37. Rasul, A., Millimouno, F.M., Ali Eltayb, W., Ali, M., Li, J., Li, X., 2013. Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. Biomed. Res. Int., https://doi.org/10.1155/2013/379850.

    Google Scholar 

  38. Sforcin, J.M., Bankova, V., 2011. Propolis: is there a potential for the development of new drugs. J. Ethnophamacol. 133, 253–260.

    CAS  Google Scholar 

  39. Sidwell, R.W., 1986. Determination of antiviral activity. Drugs Pharm. Sci. 27, 433–480.

    CAS  Google Scholar 

  40. Sieuwerts, A.M., Klijn, J.G., Peters, H.A., Foekens, J.A., 1995. The MTTtetrazolium salt assay scrutinized: how to use this assay reliably to measure metabolic activity of cell cultures in vitro forthe assessment of growth characteristics IC50-values and cell survival. Eur. J. Clin. Chem. Clin. Biochem. 33, 813–823.

    PubMed  CAS  Google Scholar 

  41. Takeuchi, H., Baba, M., Shigeta, S., 1991. An application of tetrazolium (MTT) colori-metric assay forthe screening of anti-herpes simplex virus compounds. J. Virol. Methods 33, 61–71.

    PubMed  CAS  Google Scholar 

  42. Teerasripreecha, D., Phuwapraisirisan, P., Puthong, S., Kimura, K., Okuyama, M., Mori, H., Kimura, A., Chanchao, C., 2012. In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis. BMC Complement. Altera Med. 12, https://doi.org/10.1186/1472-6882-12-27.

  43. Toreti, V.C., Sato, H.H., Pastore, G.M., Park, Y.K., 2013. Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid. Based Complement. Altera Med., https://doi.org/10.1155/2013/697390.

    Google Scholar 

  44. Utispan, K., Chitkul, B., Koontongkaew, S., 2017. Cytotoxic activity of propolis extracts from the stingless bee Trigona sirindhornae against primary and metastatic head and neck cancer cell lines. Asian Pac. J. Cancer Prev. 18, 1051–1055.

    PubMed  PubMed Central  Google Scholar 

  45. Valencia, D., Alday, E., Robles-Zepeda, R., Garibay-Escobar, A., Galvez-Ruiz, J.C., Salas-Reyes, M., Jimenez-Estrada, M., Velazquez-Contreras, E., Hernandez, J., Velazquez, C., 2012. Seasonal effect on chemical composition and biological activities of Sonoran propolis. Food Chem. 131, 645–651.

    CAS  Google Scholar 

  46. Waterman, P.G., Mole, S., 1994. Analysis of Phenolic Plant Metabolites. Blackwell Scientific, Oxford.

    Google Scholar 

  47. Woisky, R.G., Salatino, A., 1998. Analysis of propolis: some parameters and procedures for chemical quality control. J. Apic. Res. 37, 99–105.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alessandro Guedes.

Additional information

Author contributions

SH performed the propolis extraction and fractioning, the chemical and antioxidant analysis, and the manuscript draft and revision writing; AG supervised the propolis extraction and fractioning process; LF, DRZ, CN and REL performed the antiviral assays; HSF performed the cytotoxicity assay; MR contributed to the propolis fractioning process and its chemical characterization; DS and GM contributed to the chemical characterization of the propolis samples; CMMC was responsible for the overall design of the work and supervision; all authors participated in the draft of the manuscript,analysis of the results and revision of the final version.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hochheim, S., Guedes, A., Faccin-Galhardi, L. et al. Determination of phenolic profile by HPLC-ESI-MS/MS, antioxidant activity, in vitro cytotoxicity and anti-herpetic activity of propolis from the Brazilian native bee Melipona quadrifasciata. Rev. Bras. Farmacogn. 29, 339–350 (2019). https://doi.org/10.1016/j.bjp.2018.12.010

Download citation

Keywords

  • Antioxidant
  • Antiviral
  • Cytotoxicity
  • Herpes simplex
  • Propolis
  • Stingless bee