Micellar propolis nanoformulation of high antioxidant and hepatoprotective activity

Abstract

The present study reports a promising antioxidant protection by a recently developed micellar propolis formulation, against oxidative stress in in vitro and in vivo models of toxicity. The formulation, based on poplar propolis encapsulated in poly(ethylene oxide)-β-poly(propylene oxide)-β-poly(ethylene oxide) triblock copolymer (PEO26-PPO40-PEO26) micelles is characterized by small size (Dh = 20 nm), enhances aqueous solubility and good colloidal stability. In vitro, propolis-loaded PEO26-PPO40-PEO26 micelles (20–100 μg/ml) significantly increased the cell viability of human hepatoma HepG2 cells, subjected to H2O2-induced cell injury (0.1 mM, 1 h). Antioxidant activity and protection of the micellar propolis were evaluated in a model of carbon tetrachloride-induced hepatotoxicity in rats (10% CCl4 solution, 1.25 ml/kg, p.o.) by measurement of non-enzyme (malondialdehyde and glutathione) and enzyme (catalase and superoxide dismutase) biomarkers of oxidative stress. Clinic observations, hematological, biochemical parameters and histological analysis were also performed. In vivo, micellar propolis (20 mg/kg b.w., p.o., 14 days) ameliorated CCl4-induced acute liver injury in rats. The oral administration of micellar propolis significantly prevented serum transaminase increases, as well as brought the levels of malondialdehyde, glutathione, and antioxidant enzymes catalase and superoxide dismutase toward the controls levels. Therefore, PEO26-PPO40-PEO26 micelles could be considered as a promising oral delivery system of propolis against oxidative stress injury in liver cells.

References

  1. Aebi, H., 1974. Catalase. In: Methods of Enzymatic Analysis. Elsevier, pp. 673–684.

    Google Scholar 

  2. Andreu, G.L.P., Reis, F.H.Z., Dalalio, F.M., Nuñez Figueredo, Y., Cuesta Rubio, O., Uyemura, S.A., Curti, C., Alberici, L.C., 2015. The cytotoxic effects of brown Cuban propolis depend on the nemorosone content and may be mediated by mito-chondrial uncoupling. Chem. Biol. Interact. 228, 28–34.

    Google Scholar 

  3. Angelova, A., Angelov, B., Mutafchieva, R., Lesieur, S., Couvreur, P., 2011. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery. Acc. Chem. Res. 44, 147–156.

    PubMed  CAS  Google Scholar 

  4. Angelova, A., Drechsler, M., Garamus, V.M., Angelov, B., 2018. Liquid crystalline nanostructures as PEGylated reservoirs of omega-3 polyunsaturated fatty acids: structural insights toward delivery formulations against neurodegenerative dis-orders. ACS Omega 3, 3235–3247.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Bacanli, M., Başaran, A.A., Başaran, N., 2016. The antioxidant, cytotoxic, and antigenotoxic effects of galangin, puerarin, and ursolic acid in mammalian cells. Drug Chem. Toxicol. 40, 256–262.

    PubMed  Google Scholar 

  6. Bai, X., Qiu, A., Guan, J., Shi, Z., 2007. Antioxidant and protective effect of an oleanolic acid-enriched extract of A deliciosa root on carbon tetrachloride induced rat liver injury. Asia Pac. J. Clin. Nutr. 16 (Suppl. 1), 169–173.

    PubMed  CAS  Google Scholar 

  7. Banskota, A.H., Tezuka, Y., Adnyana, I.K., Midorikawa, K., Matsushige, K., Message, D., Huertas, A.A.G., Kadota, S., 2000. Cytotoxic, hepatoprotective and free radical scavenging effects of propolis from Brazil, Peru, the Netherlands and China. J. Ethnopharmacol. 72, 239–246.

    PubMed  CAS  Google Scholar 

  8. Bastakoti, B.P., Liu, Z., 2017. Chapter 10 — Multifunctional polymeric micelles as therapeutic nanostructures: targeting, imaging, and triggered release. In: Ficai, A., Grumezescu, A.M. (Eds.), Nanostructures for CancerTherapy, Micro and Nano Technologies. Elsevier, pp. 261–283.

    Google Scholar 

  9. Bastakoti, B.P., Wu, K.C.W., Inoue, M., Yusa, S., Nakashima, K., Yamauchi, Y., 2013. Multifunctional core-shell-corona-type polymeric micelles for anticancer drug-delivery and imaging. Chemistry 19, 4812–4817.

    PubMed  CAS  Google Scholar 

  10. Bhadauria, M., Nirala, S.K., Shukla, S., 2008. Multiple treatment of propolis extract ameliorates carbon tetrachloride induced liver injury in rats. Food Chem. Toxicol. 46, 2703–2712.

    PubMed  CAS  Google Scholar 

  11. Boisard, S., Le Ray, A.M., Gatto, J., Aumond, M.-C., Blanchard, P., Derbré, S., Flurin, C., Richomme, P., 2014. Chemical composition, antioxidant and anti-AGEs activities of a French poplar type propolis. J. Agric. Food Chem. 62, 1344–1351.

    PubMed  CAS  Google Scholar 

  12. Coban, F.K., Akil, M., Liman, R., Cigerci, L.H., 2017. Antioxidant and genotoxic effects of caffeic acid phenethyl ester (cape) in exercise-induced oxidative stress. Fresenius Environ. Bull. 26, 2683–2687.

    Google Scholar 

  13. Council of Europe, 1991. European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS123).

    Google Scholar 

  14. da Silva Frozza, C.O., da Silva Ribeiro, T., Gambato, G., Menti, C., Moura, S., Pinto, P.M., Staats, C.C., Padilha, F.F., Begnini, K.R., Leon, P.M.M. de, Borsuk, S., Savegnago, L., Dellagostin, O., Collares, T., Seixas, F.K, Henriques, J.A.P., Roesch-Ely, M., 2014. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells. Food Chem. Toxicol. 63, 195–204.

    Google Scholar 

  15. El-Guendouz, S., Aazza, S., Lyoussi, B., Majdoub, N., Bankova, V., Popova, M., Raposo, S., Antunes, M.D., Miguel, M.G., 2018. Effect of poplar-type propolis on oxidative stability and Theological properties of O/W emulsions. Saudi Pharm. J. 26, 1073–1082.

    PubMed  PubMed Central  Google Scholar 

  16. El-Khatib, A.S., Agha, A.M., Mahran, L.G., Khayyal, M.T., 2014. Prophylactic effect of aqueous propolis extract against acute experimental hepatotoxicity in vivo. Z. Naturforschung C 57, 379–385.

    Google Scholar 

  17. EU, 2010. Directive 2010/63. J. Eur. Union 276, 33–79.

    Google Scholar 

  18. Ferrer-Tasies, L., Moreno-Calvo, E., Cano-Sarabia, M., Aguilella-Arzo, M., Angelova, A., Lesieur, S., Ricart, S., Faraudo, J., Ventosa, N., Veciana, J., 2013. Quatsomes: vesicles formed by self-assembly of sterols and quaternary ammonium surfactants. Langmuir ACS J. Surf. Colloids 29, 6519–6528.

    CAS  Google Scholar 

  19. Gorinova, C., Aluani, D., Yordanov, Y., Kondeva-Burdina, M., Tzankova, V., Popova, C., Yoncheva, K., 2016. In vitro evaluation of antioxidant and neuroprotective effects of curcumin loaded in Pluronic micelles. Biotechnol. Biotechnol. Equip. 30, 991–997.

    CAS  Google Scholar 

  20. Guerzoni, L.P.B., Nicolas, V., Angelova, A., 2017. In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm. Res. 34, 492–505.

    PubMed  CAS  Google Scholar 

  21. Hofer, T., Jørgensen, T.O., Olsen, R.L, 2014. Comparison of food antioxidants and iron chelators in two cellular free radical assays: strong protection by luteolin. J. Agric. Food Chem. 62, 8402–8410.

    PubMed  CAS  Google Scholar 

  22. Jug, M., Končič, M.Z., Kosalec, I., 2014. Modulation of antioxidant, chelating and antimicrobial activity of poplar chemo-type propolis by extraction procures. LWT - Food Sci. Technol. 57, 530–537.

    CAS  Google Scholar 

  23. Kabanov, A.V., Lemieux, P., Vinogradov, S., Alakhov, V., 2002. Pluronic block copolymers: novel functional molecules for gene therapy. Adv. Drug Deliv. Rev. 54, 223–233.

    PubMed  CAS  Google Scholar 

  24. Li, X., Huang, Y., Chen, X., Zhou, Y., Zhang, Y., Li, P., Liu, Y., Sun, Y., Zhao, J., Wang, F., 2009. Self-assembly and characterization of Pluronic P105 micelles for liver-targeted delivery of silybin. J. Drug Target. 17, 739–750.

    PubMed  CAS  Google Scholar 

  25. Lin, C.C., Yen, M.H., Lo, T.S., Lin, J.M., 1998. Evaluation of the hepatoprotective and antioxidant activity of Boehmeria nivea var. nivea and B. nivea var. tenacissima. J. Ethnopharmacol. 60, 9–17.

    CAS  Google Scholar 

  26. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the Folin Phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  27. Mahran, L.G., el-Khatib, A.S., Agha, A.M., Khayyal, M.T., 1996. The protective effect of aqueous propolis extract on isolated rat hepatocytes against carbon tetrachloride toxicity. Drugs Exp. Clin. Res. 22, 309–316.

    PubMed  CAS  Google Scholar 

  28. Mavri, A., Abramovic, H., Polak, T., Bertoncelj, J., Jamnik, P., Smole, S.M., Jersek, B., 2012. Chemical properties and antioxidant and antimicrobial activities of Slovenian propolis. Chem. Biodivers. 9, 1545–1558.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Misra, H.P., Fridovich, I., 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170–3175.

    PubMed  CAS  Google Scholar 

  30. Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63.

    CAS  Google Scholar 

  31. Nita, M., Grzybowski, A., 2016. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior Eye Segments in Adults. Oxid. Med. Cell. Longev., https://doi.org/10.1155/2016/3164734.

    Google Scholar 

  32. Petrov, P.D., Tsvetanov, C.B., Mokreva, P., Yoncheva, K., Konstantinov, S., Trusheva, B., Popova, M., Bankova, V., 2016. Novel micellar form of poplar propolis with high cytotoxic activity. RSC Adv. 6, 30728–30731.

    CAS  Google Scholar 

  33. Sahu, A., Kasoju, N., Goswami, P., Bora, U., 2011. Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications. J. Biomater. Appl. 25, 619–639.

    PubMed  CAS  Google Scholar 

  34. Sawicka, D., Car, H., Borawska, M.H., Niklinski, J., 2012. The anticancer activity of propolis. Folia Histochem. Cytobiol. 50, 25–37.

    PubMed  CAS  Google Scholar 

  35. Sumida, Y., Niki, E., Naito, Y., Yoshikawa, T., 2013. Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radic. Res. 47, 869–880.

    PubMed  CAS  Google Scholar 

  36. Torok, N.J., 2016. Dysregulation of redox pathways in liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G667–G674.

    PubMed  PubMed Central  Google Scholar 

  37. Turan, I., Demir, S., Misir, S., Kilinc, K., Mentese, A., Aliyazicioglu, Y., Deger, O., 2015. Cytotoxic effect of Turkish propolis on liver, colon, breast, cervix and prostate cancer cell lines. Trop. J. Pharm. Res. 14, 777–782.

    CAS  Google Scholar 

  38. Tyszka-Czochara, M., Pasko, P., Reczynski, W., Szlósarczyk, M., Bystrowska, B., Opoka, W., 2014. Zinc and propolis reduces cytotoxicity and proliferation in skin fibroblast cell culture: total polyphenol content and antioxidant capacity of propolis. Biol. Trace Elem. Res. 160, 123–131.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Tzankova, V., Aluani, D., Kondeva-Burdina, M., Yordanov, Y., Odzhakov, F., Apostolov, A., Yoncheva, K., 2017. Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed. Pharmacother. 92, 569–579.

    PubMed  CAS  Google Scholar 

  40. Watanabe, M.A.E., Amarante, M.K., Conti, B.J., Sforcin, J.M., 2011. Cytotoxic constituents of propolis inducing anticancer effects: a review. J. Pharm. Pharmacol. 63, 1378–1386.

    PubMed  CAS  Google Scholar 

  41. Weber, L.W.D., Boll, M., Stampfl, A., 2003. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol. 33, 105–136.

    CAS  Google Scholar 

  42. Yang, X., Wang, X., Chen, X.Y., Ji, H.Y., Zhang, Y., Liu, A.J., 2018. Pinocembrin-lecithin complex: characterization, solubilization, and antioxidant activities. Biomolecules 8, https://doi.org/10.3390/biom8020041.

  43. Yoncheva, K., Kamenova, K., Perperieva, T., Hadjimitova, V., Donchev, P., Kaloyanov, K., Konstantinov, S., Kondeva-Burdina, M., Tzankova, V., Petrov, P., 2015. Cationic triblock copolymer micelles enhance antioxidant activity, intracellular uptake and cytotoxicity of curcumin. Int. J. Pharm. 490, 298–307.

    PubMed  CAS  Google Scholar 

  44. Zhao, Y., Tian, W., Peng, W., 2014. Anti-proliferationand insulin resistance alleviation of he patocellularcarcinomacells HepG2 in vitro by Chinese propolis. J. Food Nutr. Res. 2, 228–235.

    Google Scholar 

  45. Zou, A., Li, Y., Chen, Y., Angelova, A., Garamus, V.M., Li, N., Drechsler, M., Angelov, B., Gong, Y., 2017. Self-assembled stable sponge-type nanocarries for Brucea javanica oil delivery. Colloids Surf. B: Biointerfaces 153, 310–319.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Virginia Tzankova.

Additional information

VT mainly contributed to conception, study design and interpretation of the results and writing of the manuscript, VB has substantial contribution in propolis preparation and chemical characterization, PP prepared and characterized the propolis loaded micellar nanoformulation and contributed to writing of the manuscript, DA and YY (PhD student) have a substantial contribution to acquisition of experimental in vitro and in vivo data (biochemical and hematology parameters), MKB contributed to no nenzyme biomarker analysis in vivo, RS and VV contributed in acquisition of experimental in vivo data and oxidative enzyme biomarker analysis, FO and AA have performed histopathology analysis and results interpretation, BT and KY contributed to the release studies, interpretation of the results and critical revision of the manuscript.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tzankova, V., Aluani, D., Yordanov, Y. et al. Micellar propolis nanoformulation of high antioxidant and hepatoprotective activity. Rev. Bras. Farmacogn. 29, 364–372 (2019). https://doi.org/10.1016/j.bjp.2018.12.006

Download citation

Keywords

  • Liver
  • Nanocarrier
  • Oxidative stress
  • Polymer micelles
  • Propolis