Development and validation of a high-performance thin layer chromatography method for the simultaneous quantitation of α- and γ-mangostins in Thai stingless bee propolis

Abstract

Stingless bees (Apoidea) are widely distributed and commercially cultivated in artificial hives in fruit gardens. Their propolis are commonly used in traditional medicine to treat various diseases (e.g., abscesses, inflammations, and toothaches) and as a constituent of numerous health products. Thus, this study aimed to (i) develop and validate a high-performance thin layer chromatography method for the quantitation of major active constituents (α- and γ-mangostins) in propolis produced by five stingless bee species (Tetragonula fuscobalteata Cameron, T. laeviceps Smith, T. pagdeni Schwarz, Lepidotrigona terminata Smith, and I. ventralis Smith) cultivated in Thai mangosteen orchards and (ii) determine an optimal extraction solvent. Separation was performed on a silica gel 60 F254 plate using toluene/ethyl acetate/formic acid (8:2:0.1, v/v/v) as a mobile phase, and the developed method was validated to assure its linearity, precision, accuracy, and limits of detection/quantitation. Propolis extract from T. fuscobalteata exhibited the highest mangostin content, and acetone was shown to be more a more effective extraction solvent than dichloromethane, ethanol, or methanol. Thus, the simplicity and reliability of the developed method make it well suited for the routine analysis (e.g., for quality control) of commercial products containing stingless bee propolis.

References

  1. Bankova, V., 2005. Recent trends and important developments in propolis research. Evid-Based Complement Altera Med. 2, 29–32.

    Article  Google Scholar 

  2. Boongird, S., 2011. Aspects of culturing, reproductive behavior, and colony formation in the stingless bee Tetragonula fuscobalteata (Hymenoptera: Apidae: Meliponini). J. Kans. Entomol. Soc. 84, 190–196.

    Article  Google Scholar 

  3. Chang, H.F., Yang, L.L., 2012. Gamma-mangostin, a micronutrient of mangosteen fruit, induces apoptosis in human colon cancer cells. Molecules 17, 8010–8021.

    Article  CAS  Google Scholar 

  4. Choudhari, M.K., Punekar, S.A., Ranade, R.V., Paknikar, K.M., 2012. Antimicrobial activity of stingless bee (Trigona sp.) propolis used in the folk medicine of Western Maharashtra, India. J. Ethnopharmacol. 141, 363–367.

    Article  CAS  Google Scholar 

  5. Chuttong, B., Chanbang, Y., Sringarm, K., Burgett, M., 2016. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem. 192, 149–155.

    Article  CAS  Google Scholar 

  6. da Cunha, M.G., Franchin, M., de Carvalho Galvao, L.C., de Ruiz, A.L., de Carvalho, J.E., Ikegaki, M., de Alencar, S.M., Koo, H., Rosalen, P.L., 2013. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis. BMC Complement. Altera Med. 13, https://doi.org/10.1186/1472-6882-13-23.

  7. Dutra, R.P., Abreu, B.V., Cunha, M.S., Batista, M.C., Torres, L.M., Nascimento, F.R., Ribeiro, M.N., Guerra, R.N., 2014. Phenolic acids, hydrolyzable tannins, and antioxidant activity of geopropolis from the stingless bee Melipona fasciculata Smith. J. Agric. Food Chem. 62, 2549–2557.

    Article  CAS  Google Scholar 

  8. Guzelmeric, E., Ristivojević, P., Trifković, J., Dastan, T., Yilmaz, O., Cengiz, O., Yesilada, E., 2018. Authentication of Turkish propolis through HPTLC fingerprints combined with multivariate analysis and palynological data and their comparative antioxidant activity. LWT-Food Sci. Technol. 87, 23–32.

    Article  CAS  Google Scholar 

  9. Ibrahim, M.Y., Hashim, N.M., Mariod, A.A., Mohan, S., Abdulla, M.A., Abdelwahab, S.I., Arbab, I.A., 2016. α-Mangostin from Garcinia mangostana Linn: an updated review of its pharmacological properties. Arabian J. Chem. 9, 317–329.

    Article  CAS  Google Scholar 

  10. ICH, 1996/2005. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. Validation of Analytical Procedures: Text and Methodology. ICH, Geneva, Switzerland.

    Google Scholar 

  11. Ishizu, E., Honda, S., Vongsak, B., Kumazawa, S., 2018. Identification of plant origin of propolis from Thailand stingless bees by comparative analysis. Nat. Prod. Commun. 13, 973–975.

    Google Scholar 

  12. Kongkiatpaiboon, S., Vongsak, B., Machana, S., Weerakul, T., Pattarapanich, C., 2016. Simultaneous HPLC quantitative analysis of mangostin derivatives in Tetragonula pagdeni propolis extracts. J. King Saud Univ. Sci. 28, 131–135.

    Article  Google Scholar 

  13. Kongkiatpaiboon, S., Chewchinda, S., Vongsak, B., 2018. Optimization of extraction method and HPLC analysis of six caffeoylquinic acids in Pluchea indica leaves from different provenances in Thailand. Rev. Bras. Farmacogn. 28, 145–150.

    Article  CAS  Google Scholar 

  14. Kustiawan, P.M., Puthong, S., Arung, E.T., Chanchao, C., 2014. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines. Asian Pac. J. Trop. Biomed. 4, 549–556.

    Article  CAS  Google Scholar 

  15. Michel, T., Destandau, E., Fougere, L., Elfakir, C., 2012. New “hyphenated” CPC-HPLC-DAD-MS strategy for simultaneous isolation, analysis and identification of phytochemicals: application to xanthones from Garcinia mangostana. Anal. Bioanal. Chem. 404, 2963–2972.

    Article  CAS  Google Scholar 

  16. Nordin, A., Sainik, N.Q.A.V., Chowdhury, S.R., Saim, A.B., Idrus, R.B.H., 2018. Physicochemical properties of stingless bee honey from around the globe: a comprehensive review. J. Food Compos. Anal. 73, 91–102.

    Article  CAS  Google Scholar 

  17. Pedan, V., Weber, C., Do, T., Fischer, N., Reich, E., Rohn, S., 2018. HPTLC fingerprint profile analysis of cocoa proanthocyanidins depending on origin and genotype. Food Chem. 267, 277–287.

    Article  CAS  Google Scholar 

  18. Pothitirat, W., Gritsanapan, W., 2008. Thin-layer chromatography-densitometric analysis of alpha-mangostin content in Garcinia mangostana fruit rind extracts. J. AOAC Int. 91, 1145–1148.

    Article  CAS  Google Scholar 

  19. Sanpa, S., Popova, M., Bankova, V., Tunkasiri, T., Eitssayeam, S., Chantawannakul, P., 2015. Antibacterial compounds from propolis of Tetragonula laeviceps and Tetrigona melanoleuca Seanbualuang P., 2012. Basic knowledge of beekeeping. Naresuan Universityjournal 20, 93–100. (Hymenoptera: Apidae) from Thailand. PLoS ONE 10, e0126886.

    Google Scholar 

  20. Shawky, E., Ibrahim, R.S., 2018. Bioprofiling for the quality control of Egyptian propolis using an integrated NIR-HPTLC-image analysis strategy. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1095, 75–86.

    Article  CAS  Google Scholar 

  21. Silici, S., Kutluca, S., 2005. Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region. J. Ethnopharmacol. 99, 69–73.

    Article  CAS  Google Scholar 

  22. Umthong, S., Phuwapraisirisan, P., Puthong, S., Chanchao, C., 2011. In vitro antiproliferative activity of partially purified Trigona laeviceps propolis from Thailand on human cancer cell lines. BMC Complement. Altera Med. 11, https://doi.org/10.1186/1472-6882-11-37.

  23. Vongsak, B., Kongkiatpaiboon, S., Jaisamut, S., Machana, S., Pattarapanich, C., 2015. In vitro alpha glucosidase inhibition and free-radical scavenging activity of propolis from Thai stingless bees in mangosteen orchard. Rev. Bras. Farmacogn. 25, 445–450.

    Article  CAS  Google Scholar 

  24. Vongsak, B., Chonanant, C., Machana, S., 2016. In vitro cytotoxicity of Thai stingless bee propolis from Chanthaburi orchard. Walailak J. Sci. Technol. 14, 741–747.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Boonyadist Vongsak.

Additional information

Authors’ contributions

SC’s contribution included HPTLC analysis, analyzing the results,and preparing the paper. BV’s contribution included collecting samples, designing and performing laboratory work, analyzing the results, and preparing the paper. The authors have read the final manuscript and approved of the submission.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chewchinda, S., Vongsak, B. Development and validation of a high-performance thin layer chromatography method for the simultaneous quantitation of α- and γ-mangostins in Thai stingless bee propolis. Rev. Bras. Farmacogn. 29, 333–338 (2019). https://doi.org/10.1016/j.bjp.2018.12.004

Download citation

Keywords

  • High-performance thin layer
  • chromatography
  • Mangosteen
  • Mangostin
  • Method validation
  • Propolis
  • Stingless bee