Identification of compounds from chufa (Eleocharis dulcis) peels with inhibitory acrylamide formation activity

Abstract

Five compounds were isolated from the peels of chufa (Eleocharis dulcis (Burm.f.) Trin. ex Hensch., Cyperaceae). The chemical structures were determined by various spectroscopic analysis methods, including 1D and 2D NMR, and by comparison with literature data. All compounds were isolated for the first time from the peels of chufa. Compounds orcinol glucoside, leonuriside A, 2-hydroxymethyl-6-(5-hydroxy-2-methyl-phenoxy-methyl)-tetra-hydro-pyran-3,4,5-triol, and 1,4-dihydroxy-3-methoxy-phenyl-4-O-β-d-glucopyranoside showed good acrylamide formation activity, and acrylamide inhibition rates were 30.24, 32.81, 30.53, and 28.18%, respectively.

References

  1. Bassama, J., Brat, P., Bohuon, P., Boulanger, R., Günata, Z., 2010. Study of acrylamide mitigation in model system: effect of pure phenolic compounds. Food Chem. 123, 558–562.

    Article  CAS  Google Scholar 

  2. Bartkiene, E., Jakobsone, I., Pugajeva, I., Bartkevics, V., Vidmantiene, D., Juodeikiene, G., 2015. Influence of the addition of Helianthus tuberosus L. fermented with different lactobacilli on acrylamide content in biscuits. Int. J. Food Sci. Tech. 50, 431–439.

    Article  CAS  Google Scholar 

  3. Carrieri, G., Anese, M., Quarta, B., Bonis, M., Ruocco, G., 2010. Evaluation of acrylamide formation in potatoes during deep-frying: the effect of operation and configuration. J. Food Eng. 98, 141–149.

    Article  CAS  Google Scholar 

  4. Diego, Q., Lili, D.B., John, S.B., Nathali, V., Ericsson, C.B., 2016. Synthesis and antifungal activity against Fusarium oxysporum of some Brassinin analogs derived from L-tryptophan: a DFT/B3LYP study on the reaction mechanism. Molecules, 21, https://doi.org/10.3390/molecules21101349.

  5. Jin, C., Wu, X.Q., Zhang, Y., 2013. Relationship between antioxidants and acrylamide formation: a review. Food Res. Int. 51, 611–620.

    Article  CAS  Google Scholar 

  6. Ge, J.F., Gao, W.C., Cheng, W.M., Lu, W.L., Tang, J., Peng, L., Li, N., Chen, F.H., 2014. Orcinol glucoside products antidepressant effects by blocking the behavioural and neuronal deficits caused by chronic stress. Eur. Neuropsychopharm. 24, 172–180.

    Article  CAS  Google Scholar 

  7. Li, X.R., Luo, Y.H., He, J., Peng, L.Y., Wu, X.D., Du, R.N., Zhao, Q.S., 2013. Phenolic constituents and antioxidant activity of Eleocharis tuberosa peels. Nat. Prod. Res. 25, 1615–1620.

    CAS  Google Scholar 

  8. Luo, Y.H., Li, X.R., He, Juan, Peng, L.Y., Wu, X.D., Du, R.N., Zhao, Q.S., 2014. Isolation, characterisation, and antioxidant activities of flavonoids from chufa (Eleocharis tuberosa) peels. Food Chem. 164, 30–35.

    Article  CAS  Google Scholar 

  9. Li, Y.X., Pan, Y.G., He, F.P., Yuan, M.Q., Li, S.B., 2016. Pathway analysis and metabolites identification by metabolomics of etiolation substrate from fresh-cut Chinese water chestnut (Eleocharis tuberosa). Molecules 21, https://doi.org/10.3390/molecules21121648.

  10. Li, N., Tan, N.H., Zhou, J., 2003. A new lignan glycoside from Curculigo capitulata. Acta Botanica Yunn Anica 25, 711–715.

    CAS  Google Scholar 

  11. Li, G.Q., Deng, Z.W., Li, J., Fu, H.Z., Lin, W.H., 2004. Chemical constituents fromStarfish Asterias rollestoni. J. Pharm. Sci. 13, 81–86.

    CAS  Google Scholar 

  12. Li, S., Wan, C.X., He, L.L., Yan, Z.G., Wang, K.S., Yuan, M.H., Zhang, Z.F., 2017. Rapid identification and quantitative analysis of chemical constituents of Gentiana veitchiorum by UHPLC-PDA-QTOF-MS. Rev. Bras. Farmacogn. 27, 188–194.

    Article  CAS  Google Scholar 

  13. Mottram, D.S., Friedman, M., 2008. Symposium on the chemistry and toxicology of acrylamide. J. Pharm. Sci. 56, 5983.

    CAS  Google Scholar 

  14. Marion, R., Reinhard, M., 2018. Acrylamide in cocoa: a survey of acrylamide in cocoa and cocoa products sourced from the German market. Eur. Food Res. Technol. 244, 1381–1388.

    Article  CAS  Google Scholar 

  15. Maurus, B., Koni, G., 2008. In GC-MS, acrylamide from heated foods maybe coeluted with 3-hydroxy propionitrile. Eur. Food Res. Technol. 227, 945–948.

    Article  CAS  Google Scholar 

  16. Matissek, R., Raters, M., Friedman, M., Mottram, D., 2005. Analysis of acrylamide in food chemistry and safety of acrylamide in food. Adv. Exp. Med. Biol. 561, 293–302.

    Article  CAS  Google Scholar 

  17. Sugaya, K., Hashimoto, F., Ono, M., Ito, Y., Masuoka, C., Nohara, T., 1998. Antioxidative constituents from Leonurii Herba (Leonurus japonicas). Food Sci. Technol. Int. 4, 278–281.

    CAS  Google Scholar 

  18. Takashi, S., Ayashi, N., Satoru, T., Yasuo, S., Makoto, T., Masayuki, N., 2007. Preparation of alkylresorcinol glycosides and their use in cosmetics. Patent WO 2007/077770, A1.

    Google Scholar 

  19. Tateo, F., Bononi, M., Gallone, F., 2010. Acrylamide content in potato chips on the Italian market determined by liquid chromatography tandem mass spectrometry. Int. J. Food Sci. Tech. 45, 629–634.

    Article  CAS  Google Scholar 

  20. Van, B.M., Fogliano, V., Pellegrini, N., Stanton, C., Scolz, G., Lalljie, S., Somoza, V., Knorr, D., Jasti, P.R., Eisenbrand, G., 2010. A review on the beneficial aspects of food processing. Mol. Nutr. Food Res. 54, 1215–1247.

    Article  CAS  Google Scholar 

  21. Vural, G., Hamide, Z.S., 2007. Effects of some cations on the formation of acrylamide and furfurals in glucose-asparagine model system. Eur. Food Res. Technol. 225, 815–820.

    Article  CAS  Google Scholar 

  22. Wu, Z.J., Ouyang, M.A., Wang, S.B., 2008. Two new phenolic water-soluble constituents from branch bark of Davidia involucrata. Nat. Prod. Res. 22, 483–488.

    Article  CAS  Google Scholar 

  23. Zhang, Y., Fang, H.R., Zhang, Y., 2008. Study on formation of acrylamide in asparagine-sugar microwave heating systems using UPLC-MS/MS analytical method. Food Chem. 108, 542–550.

    Article  CAS  Google Scholar 

  24. Zhan, G., Pan, L.Q., Tu, K., Jiao, S.S., 2016. Antitumor, antioxidant, and nitrite scavenging effects of Chinese Water Chestnut (Eleocharis dulcis) peel flavonoids. J. Food Sci. 81, 2578–2586.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shujie Wu or Yanghe Luo.

Additional information

Author’s contribution

HN and SQH contributed equally to this paper on structural determination, writing this paper, and running the laboratory work; JXG conducted the acrylamide formation activity; YHL performed the NMR investigations; XCL, YML, SJW, and JYY carried out the extraction, isolation, and purification.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nie, H., Huang, S., Li, X. et al. Identification of compounds from chufa (Eleocharis dulcis) peels with inhibitory acrylamide formation activity. Rev. Bras. Farmacogn. 29, 483–487 (2019). https://doi.org/10.1016/j.bjp.2018.11.002

Download citation

Keywords

  • Chinese water chestnut
  • Chufa peels
  • Acrylamide
  • Antioxidant
  • HPLC