Coupled monolithic columns as an alternative for the use of viscous ethanol-water mobile phases on chromatographic fingerprinting complex samples

Abstract

Concepts of sustainability have received attention from people involved in investigation of nature-derived matrices. The effects of concomitant pollutant activities are cumulative and harmful to the environment from which these matrices are obtained. High performance liquid chromatography analyses generate millions of litters of chemical waste worldwide every year. Reduction of organic solvent consumption during the analyses and replacement of harmful solvents with greener options are the main approaches to mitigate this problem. This work explored the strategy of employing monolithic columns when the problematic acetonitrile is intended to be replaced with the greener but more viscous ethanol in fingerprinting a leaf extract of Lippia sidoides Cham., Verbenaceae, by high performance liquid chromatography. Two monolithic columns were coupled in series to test a more critical backpressure condition while doubling the number of theoretical plates, which can be useful to separate the hundreds of compounds present in plant extracts. All work was conducted by employing design of experiments. A mathematical model indicated an optimum point in which ethanol was the only organic solvent of the mobile phase. However, the use of a proper metric, which considered environmental parameters together with separation parameters, evidenced that an experimental condition of the original central composite design should be preferred over the former even if containing 20% acetonitrile in the organic modifier mixture. Flow rates of up to 3 ml/min were accommodated with two coupled monolithic columns without exceeding 250 bar. These findings reinforced that no state-of-the-art instruments are needed to shift from traditional harmful solvents to greener ones, but only require a shift in researchers’ approach toward sustainability.

References

  1. Almeida, M.C.S.De., Alves, L.A., Gregório, L., Souza, S., Machado, L.L., Matos, M.C.De., Conceição, M., Oliveira, F.De., Lemos, T.L.G., Braz-filho, R., 2010. Flavonoides e outras substâncias de Lippiasidoides e suas atividades antioxidantes. Quim. Nova 33, 1877–1881.

    Article  Google Scholar 

  2. Castro, A.C.C.M., Oda, F.B., Almeida-Cincotto, M.G.J., Davanço, M.G., Chiari-Andréo, B.G., Cicarelli, R.M.B., Peccinini, R.G., Zocolo, G.J., Ribeiro, P.R.V., Corrêa, M.A., Isaac, V.L.B., Santos, A.G., 2018. Green coffee seed residue: a sustainable source of antioxidant compounds. Food Chem. 246, 48–57.

    CAS  Article  PubMed Central  Google Scholar 

  3. Causon, T.J., Cortes, H.J., Shellie, R.A., Hilder, E.F., 2012. Temperature pulsing for controlling chromatographic resolution in capillary liquid chromatography. Anal. Chem. 84, 3362–3368.

    CAS  Article  PubMed Central  Google Scholar 

  4. Destandau, E., Lesellier, E., 2008. Chromatographic properties of ethanol/water mobile phases on silica based monolithic C18. Chromatographia 68, 985–990.

    CAS  Article  Google Scholar 

  5. Funari, C.S., Carneiro, R.L., Andrade, A.M., Hilder, E.F., Cavalheiro, A.J., 2014a. Green chromatographic fingerprinting: an environmentally friendly approach for the development of separation methods for fingerprinting complex matrices. J. Sep. Sci. 37, 37–44.

    CAS  Article  PubMed Central  Google Scholar 

  6. Funari, C.S., Carneiro, R.L., Cavalheiro, A.J., Hilder, E.F., 2014b. A trade off between separation, detection and sustainability in liquid chromatographic fingerprinting. J. Chromatogr. A 1354, 34–42.

    CAS  Article  PubMed Central  Google Scholar 

  7. Funari, C.S., Carneiro, R.L., Khandagale, M.M., Cavalheiro, A.J., Hilder, E.F., 2015. Acetone as a greener alternative to acetonitrile in liquid chromatographic fingerprinting. J. Sep. Sci. 38, 1458–1465.

    CAS  Article  PubMed Central  Google Scholar 

  8. Gaber, Y., Tornvall, U., Kumar, M.A., Ali Amin, M., Hatti-Kaul, R., 2011. HPLCEAT (Environmental Assessment Tool): a tool for profiling safety, health and environmental impacts of liquid chromatography methods. Green Chem. 13, 2021–2025.

    CAS  Article  Google Scholar 

  9. Gałuszka, A., Migaszewski, Z., Namiesnik, J., 2013. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC - Trends Anal. Chem. 50, 78–84.

    Article  Google Scholar 

  10. Gritti, F., Guiochon, G., 2012. The current revolution in column technology: how it began, where is it going? J. Chromatogr. A 1228, 2–19.

    CAS  Article  PubMed Central  Google Scholar 

  11. Guardia, M.D.La., Garrigues, S., 2011. Challenges in Green Analytical Chemistry. RSC Green Chemistry. Royal Society of Chemistry, Great Britain, https://doi.org/10.1039/9781849732963.

    Google Scholar 

  12. Lima, B.S., Ramos, C.S., Santos, J.P.A., Rabelo, T.K., Serafini, M.R., Souza, C.A.S., Soares, L.A.L., Quintans, L.J., Moreira, J.C.F., Gelain, D.P., Araújo, A.A.S., Silva, F.A., 2015. Development of standardized extractive solution from Lippia sidoides by factorial design and their redox active profile. Rev. Bras. Farmacogn. 25, 301–306.

    CAS  Article  Google Scholar 

  13. Ministério da Saúde, 2008. RENISUS - Relação Nacional de Plantas Medicinais de Interesse ao SUS [WWW Document]. Ministério da Saúde, URL file:///C:/Users/HP/Downloads/RENISUS-2009.pdf.

    Google Scholar 

  14. Pereira, A., dos, S., Girón, A.J., Admasu, E., Sandra, P., 2010. Green hydrophilic interaction chromatography using ethanol-water-carbon dioxide mixtures. J. Sep. Sci. 33, 834–837.

    Article  Google Scholar 

  15. Płotka, J., Tobiszewski, M., Sulej, A.M., Kupska, M., Górecki, T., Namieśnik, J., 2013. Green chromatography. J. Chromatogr. A 1307, 1–20.

    Article  PubMed Central  Google Scholar 

  16. Prat, D., Wells, A., Hayler, J., Sneddon, H., Mcelroy, C.R., Abou-shehada, S., Dunn, P.J., 2016. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 18, 288–296.

    Article  Google Scholar 

  17. Sandra, P., Sandra, K., Pereira, A., Vanhoenacker, G., David, F., 2010. Green chromatography, Part 1: Introduction and liquid chromatography. LC-GC Eur. 23, 242–259.

    CAS  Google Scholar 

  18. Shaaban, H., Górecki, T., 2012. Fast ultrahigh performance liquid chromatographic method for the simultaneous determination of 25 emerging contaminants in surface water and wastewater samples using superficially porous sub-3μm particles as an alternative to fully porous sub-2μm particles. Talanta 100, 80–89.

    CAS  Article  PubMed Central  Google Scholar 

  19. Shen, Y., Chen, B., van Beek, T., 2015. Alternative solvents can make preparative liquid chromatography greener. GreenChem. 17, 4073–4081.

    CAS  Google Scholar 

  20. Sutton, A.T., Fraige, K., Leme, G.M., Bolzani, V.S., Hilder, E.F., Cavalheiro, A.J., Arrua, D.R., Funari, C.S., 2018. Natural deep eutectic solvents as the major mobile phase components in high performance liquid chromatography - searching for alternatives to organic solvents. Anal. Bional. Chem., https://doi.org/10.1007/s00216-018-1027-5.

    Google Scholar 

  21. Tistaert, C., Dejaegher, B., Vander Heyden, Y., 2011. Chromatographic separation techniques and data handling methods for herbal fingerprints: a review. Anal. Chim. Acta 690, 148–161.

    CAS  Article  PubMed Central  Google Scholar 

  22. Tobiszewski, M., Mechlinska, A., Namiesnik, J., 2010. Green analytical chemistry -theory and practice. Chem. Soc. Rev. 39, 2869–2878.

    CAS  Article  PubMed Central  Google Scholar 

  23. Tobiszewski, M., Namiesnik, J., 2017. Greener organic solvents in analytical chemistry. Curr. Opin. Green Sustain. Chem. 5, 1–4.

    Article  Google Scholar 

  24. Welch, C.J., Wu, N., Biba, M., Hartman, R., Brkovic, T., Gong, X., Helmy, R., Schafer, W., Cuff, J., Pirzada, Z., Zhou, L., 2010. Greening analytical chromatography. TrAC -Trends Anal. Chem. 29, 667–680.

    CAS  Article  Google Scholar 

  25. Yehia, A.M., Mohamed, H.M., 2016. Green approach using monolithic column for simultaneous determination of coformulated drugs. J. Sep. Sci. 39, 2114–2122.

    CAS  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cristiano Soleo Funari.

Additional information

Authors’ contributions

CSF performed all the experimental work, analyzed the data and wrote the manuscript. RLC and AJC contributed to experimental design, data analysis, and drafting of the manuscript. All the authors read the final manuscript and approved the submission.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Funari, C.S., Cavalheiro, A.J. & Carneiro, R.L. Coupled monolithic columns as an alternative for the use of viscous ethanol-water mobile phases on chromatographic fingerprinting complex samples. Rev. Bras. Farmacogn. 28, 261–266 (2018). https://doi.org/10.1016/j.bjp.2018.04.010

Download citation

Keywords

  • Experimental design
  • Chromatographic fingerprint
  • Green analytical chemistry
  • Green solvents
  • HPLC