Antioxidant activity evaluation of dried herbal extracts: an electroanalytical approach

Abstract

The prevention of chronic and degenerative diseases, is a health concern deeply associated with oxidative stress. Such progressive phenomena can be avoided through exogenous antioxidant intake, which set up a reductant cascade, mopping up damaging free radicals. Medicinal herbs are commonly associated with high antioxidant potential, and hence their health benefits. The commerce of dried herbal extracts movements a big portion of developing countries economy. The determination of medicinal herbs the antioxidant activity capacity is of utmost importance. The assessment of antioxidant activity in phytotherapics is mostly achieved by spectrophotometric assays, however colored substances can produce interferences that do not occur in electroanalytical methods. Therefore, the aim of this paper is to compare spectrophotometric and voltammetric techniques to evaluate antioxidant activity in herbal drugs such as: Ginkgo biloba L., Camellia sinensis (L.) Kuntze, Theaceae; Hypericum perforatum L., Hypericaceae; Aesculus hippocastanum L., Sapindaceae; Rosmarinus officinalis L., Lamiaceae; Morinda citrifolia L., Rubiaceae; Centella asiatica (L.) Urb., Apiaceae; Trifolium pratense L., Fabaceae; Crataegus oxyacantha L., Rosaceae; and Vaccinium macrocarpon Aiton, Ericaceae.

The spectrophotometric methods employed were DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and the Folin-Ciocalteu assays. The electroanalytical method used was voltammetry and it was developed a phenoloxidase based biosensor. The redox behavior observed for each herbal sample resulted in distinguishable voltammetric profiles. The highest electrochemical indexes were found to G. biloba and H. perforatum, corroborating to traditional spectrophotometric methods. Thus, the electroanalysis of herbal drugs, may be a promising tool for antioxidant potential assessment.

References

  1. Alothman, M., Bhat, R., Karim, A.A., 2009. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 115, 785–788.

    CAS  Article  Google Scholar 

  2. Alqahtani, A., Tongkao-On, W., Li, K.M., Razmovski-Naumovski, V., Chan, K., Li, G.Q., 2015. Seasonal variation of triterpenes and phenolic compounds in australian Centella asiatica (L.) Urb. Phytochem. Anal. 26, 436–443.

    CAS  Article  PubMed Central  Google Scholar 

  3. Amaral, G.P., Dobrachinski, F., Carvalho, N.R., Barcelos, R.P., Silva, M.H., Lugoken-ski, T.H., Dias, G.R.M., Portella, R.L., Fachinetto, R., Soares, F.A.A., 2018. Multiple mechanistic action of Rosmarinus officinalis L. extract against ethanol effects in an acute model of intestinal damage. Biomed. Pharmacother. 98, 454–459.

    CAS  Article  PubMed Central  Google Scholar 

  4. Arteaga, J.F., Ruiz-Montoya, M., Palma, A., Alonso-Garrido, G., Pintado, S., Rodrígues-Mellado, J.M., 2012. Comparison of the simple cyclic voltammetry (CV) and DPPH assays forthe determination of antioxidant capacity of active principles. Molecules 17, 5126–5138.

    CAS  Article  PubMed Central  Google Scholar 

  5. Arts, M.J.T.J., Dallinga, J.S., Voss, H.P., Haenen, G.R.M.M., Bast, A., 2003. A critical appraisal of the use of the antioxidant capacity (TEAC) assay in defining optimal antioxidant structures. Food Chem. 80, 409–414.

    CAS  Article  Google Scholar 

  6. Bara, M.T.F., Serrano, S.H.P., Asquieri, E.R., Lúcio, T.C., Gil, E.S., 2008. Medida del potencial anódico en estado sólido: una herramienta para la determinaciòn del potencial antioxidante de fitoterápicos. Lat. Am. J. Pharm. 27, 89–92.

    CAS  Google Scholar 

  7. Beck, S., Stengel, J., 2016. Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L. Phytochemistry 130, 201–206.

    CAS  Article  PubMed Central  Google Scholar 

  8. Brand-Williams, W., Cuvelier, M.E., Berset, C., 1995. Use of free radical method to evaluate antioxidant activity. Lebensm-Wiss Techonol. 28, 25–30.

    CAS  Article  Google Scholar 

  9. Braz, R., Wolf, L.G., Lopes, G.C., Mello, J.C.P., 2012. Quality control and TLC profile data on selected plant species commonly found in the Brazilian market. Rev. Bras. Farmacogn. 22, 1111–1118.

    CAS  Article  Google Scholar 

  10. Brett, W., Onsman, A., Brown, T., 2010. Exploratory factor analysis: a five-step guide for novices. J. Emer. Primary Health Care 8, 1–13.

    Google Scholar 

  11. Calixto, J.B., 2000. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz. J. Med. Biol. Res. 33, 179–189.

    CAS  Article  PubMed Central  Google Scholar 

  12. Chevion, S., Roberts, M.A., Chevions, M., 2000. The use of cyclic voltammetry forthe evaluation of antioxidante capacity. Free Radical Biol. Med. 28, 860–870.

    CAS  Article  Google Scholar 

  13. Escarpa, A., 2012. Food electroanalysis: sense and simplicity. Chem. Rec. 12, 72–91.

    CAS  Article  PubMed Central  Google Scholar 

  14. Garcia, L.F., Benjamin, S.R., Marreto, R.N., Lopes, F.M., Golveia, J.C.S., Fernandes, N.C., Gil, E.S., 2015. Laccase carbon paste based biosensors for antioxidant capacity. The effect of different modifiers. Int. J. Electrochem. Sci. 10, 5650–5660.

    CAS  Google Scholar 

  15. Gil, E.S., Couto, R.O., 2013. Flavonoid electrochemistry: a review on the electroanalytical applications. Rev. Bras. Farmacog. 23, 542–558.

    CAS  Article  Google Scholar 

  16. Gil, E.S., Enache, T.A., Oliveira-Brett, A.M., 2013. Redox behaviour of verbascoside and rosmarinic acid. Comb. Chem. High Throughput Screen 16, 92–97.

    CAS  Article  Google Scholar 

  17. Gonbad, R.A., Afzan, A., Karimi, E., Sinniah, U.R., Swamy, M.K., 2015. Phytocon-stituents and antioxidant properties among commercial tea (Camellia sinensis L.) clones of Iran. Electron. J. Biotechnol. 18, 433–438.

    CAS  Article  Google Scholar 

  18. Huang, D., Prior, R.L., 2005. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 531, 841–1856.

    Google Scholar 

  19. Heydarian, M., Jooyandeh, H., Nasehi, B., Noshad, M., 2017. Characterization of Hypericum perforatum polysaccharides with antioxidant and antimicrobial activities: optimization based statistical modeling. Int. J. Biol. Macromol. 104, 287–293.

    CAS  Article  PubMed Central  Google Scholar 

  20. Karakashov, B., Grigorakis, S., Loupassaki, S., Makris, D.P., 2015. Optimisation of polyphenol extraction from Hypericum perforatum (St. John’s Wort) using aqueous glycerol and response surface methodology. J. Appl. Res. Med. Aromat. Plants 2, 1–8.

    Google Scholar 

  21. Kostić, D.A., Velicković, J.M., Mitić, S.S., Mitić, M.N., Randelović, S.S., 2012. Phenolic content, and antioxidant and antimicrobial activities of Crataegus oxyacantha L (Rosaceae) fruit extract from Southeast Serbia. Trop. J. Pharm. Res. 11, 117–124.

    Article  Google Scholar 

  22. Krishnaiah, D., Bono, A., Sarbatly, R., Anisuzzaman, S.M., 2015. Antioxidant activity and total phenolic content of an isolated Morinda citrifolia L. methanolic extract from poly-ethersulphone (PES) membrane separator. J. King Saud Univ. Eng. Sci. 27, 63–67.

    Article  Google Scholar 

  23. Levand, O., Larson, H., 2009. Some chemical constituents of Morinda citrifolia. Planta Med. 36, 186–187.

    Article  Google Scholar 

  24. Liu, F.F., Ang, C.Y.W., Heinze, T.M., Rankin, J.D., Beger, R.D., Freeman, J.P., Layjr, J.O., 2000. Evaluation of major active components in St. John’s Wort dietary supplements by high-performance liquid chromatography with photodiode array detection and electrospray mass spectrometric confirmation. J. Chromatogr. A 888, 85–92.

    CAS  Article  PubMed Central  Google Scholar 

  25. Macêdo, I.Y.L., Garcia, L.F., Oliveira-Neto, J.R., Leite, K.C.S., Ferreira, V.S., Ghedini, P.C., Gil, E.S., 2017. Electroanalytical tools for antioxidant evaluation of red fruits dry extracts. Food Chem. 217, 326–331.

    Article  PubMed Central  Google Scholar 

  26. Olgun, F.A., Ozyurt, D., Berker, K.I., Demirata, B., Apak, R., 2014. Folin-Ciocalteu spectrophotometric assay of ascorbic acid in pharmaceutical tablets and orange juice with pH adjustment and pre-extraction of lanthanum(III)-flavonoid complexes. J. Sci. Food Agric. 94, 2401–2408.

    CAS  Article  PubMed Central  Google Scholar 

  27. Oliveira-Neto, J.R., Rezende, S.G., Lobón, G.S., Garcia, T.A., Macêdo, I.Y.L., Garcia, L.F., Alves, V.F., Torres, I.M.S., Santiago, M.F., Schmidt, F., Gil, E.S., 2017. Electroanalysis and laccase-based biosensor on the determination of phenolic content and antioxidant power of honey samples. Food Chem. 237, 1118–1123.

    Article  PubMed Central  Google Scholar 

  28. Oliveira-Neto, J.R., Rezende, S.G., Reis, C.F., Benjamin, S.R., Rocha, M.L., Gil, E.S., 2016. Electrochemical behavior and determination of major phenolic antioxidants in selected coffee samples. Food Chem. 190, 506–512.

    CAS  Article  PubMed Central  Google Scholar 

  29. Oszmianski, J., Kalisz, S., Aneta, W., 2014. The content of phenolic compounds in leaf tissues of white (Aesculus hippocastanum L.) and red horse chestnut (Aesculus carea H.) colonized by the horse chestnut leaf miner (Cameraria ohridella Deschka & Dimic). Molecules 19, 14625–14636.

    Article  PubMed Central  Google Scholar 

  30. Otajagić, S., Pinjić, D., Ćavar, S., Vidic, D., Maksimović, M., 2012. Total phenolic content and antioxidant activity of ethanolic extracts of Aesculus hippocastanum L. Bull Chem. Technol. Bos. Herg. 38, 35–38.

    Google Scholar 

  31. Pisoschi, A.M., Cimpeanu, C., Predoi, G., 2015. Electrochemical methods for total antioxidant capacity and its main contributors determination: a review. Open Chem. 13, 824–856.

    CAS  Article  Google Scholar 

  32. Re, R., Pelegrini, N., Proteggente, A., Pannala, A., Yang, M., Riceevans, C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237.

    CAS  Article  PubMed Central  Google Scholar 

  33. Reis, N.S., Serrano, S.H.P., Meneghatti, R., Gil, E.S., 2009. Métodos eletroquímicos usados para avaliação da atividade antioxidante de produtos naturais. Lat. Am. J. Pharm. 28, 949–953.

    CAS  Google Scholar 

  34. Ruiz, T.F., Mendrano, M.A., Navarro, O.A., 2008. Antioxidant and free radical scavenging activities of plant extracts used in traditional medicine in Mexico. Afric. J. Biotechnol. 7, 1886–1893.

    Article  Google Scholar 

  35. Sachse, J., 1984. Quantitative hochdruckflüssigchromatographie von isoflavonen in rotklee (Trifolium pratense L). J. Chromatogr. A 298, 175–182.

    CAS  Article  Google Scholar 

  36. Tang, Y., Lou, F., Wang, J., Li, Y., Zhuang, S., 2001. Coumaroyl flavonol glycosides from the leaves of Ginkgo biloba. Phytochemistry 58, 1251–1256.

    CAS  Article  PubMed Central  Google Scholar 

  37. Vallverdú-Queralt, A., Regueiro, J., Martínez-Huélamo, M., Rinaldi Alvarenga, J.F., Leal, L.N., Lamuela-Raventos, R.M., 2014. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem. 154, 299–307.

    Article  PubMed Central  Google Scholar 

  38. Vašková, J., Fejerčáková, A., Mojžišová, G., Vaško, L., Patlevič, P., 2015. Antioxidant potential of Aesculus hippocastanum extract and escin against reactive oxygen and nitrogen species. Eur. Rev. Med. Pharmacol. Sci. 19, 879–886.

    PubMed  PubMed Central  Google Scholar 

  39. Yan, X., Brian, T., Murphy, B.T., Hammond, G.B., Vinson, J.A., Neto, C.C., 2002. Antioxidant activities and antitumor screening of extracts from cranberry fruit (Vaccinium macrocarpon). J. Agric. Food Chem. 50, 5844–5849.

    CAS  Article  PubMed Central  Google Scholar 

  40. Zegarac, J.P., Valek, L., Stipcevic, T., Martinez, S., 2010. Eletrochemical determination of antioxidant capacity of fruit tea infusions. Food Chem. 121, 820–825.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eric Souza de Gil.

Additional information

Authors’ contributions

KCSL (PhD student) contributed in running the laboratory work and drafted the paper. LFG contributed to developed a phenoloxidase based biosensor. GSL contributed in analysis of the data. DVT, EKGM and MFC contributed spectrometric analysis. MLR and WTPS contributed to critical reading of the manuscript. ESG supervised the laboratory work and contributed to critical reading of the manuscript. All the authors have read the final manuscript and approved the submission.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Leite, K.C.S., Garcia, L.F., Lobón, G.S. et al. Antioxidant activity evaluation of dried herbal extracts: an electroanalytical approach. Rev. Bras. Farmacogn. 28, 325–332 (2018). https://doi.org/10.1016/j.bjp.2018.04.004

Download citation

Keywords

  • Antioxidant power
  • Electrochemical index
  • DPPH
  • ABTS
  • Phytotherapics