Effects of hydroalcoholic extract of Celtis iguanaea on markers of cardiovascular diseases and glucose metabolism in cholesterol-fed rats

Abstract

Celtis iguanaea (Jacq.) Sarg., Cannabaceae, is popularly used in the treatment of diabetes mellitus. However, chemical and pharmacological investigations are lacking. In this study, we investigated the effects of the hydroalcoholic extract from C. iguanaea on markers of cardiovascular diseases and the glucose metabolism in cholesterol-fed rats. Therefore, hypercholesterolemic rats (1% cholesterol) were orally treated with C. iguanaea extract (C-150, CI-300, or CI-600 mg/kg) or simvastatin (4 mg/kg) (n = 6) once a day (30 days) with a hypercholesterolemic diet. A control group (C) was given saline. C. iguanaea extract showed significant decreases in serum levels of total cholesterol, LDL-cholesterol, HMG-CoA-reductase, interleukin-1 and 6, TNF-α and IFN-γ when compared to group C(p < 0.001). Hypoglycemic effects were observed along with a decrease of the activity of sucrase (CI-600), maltase (CI-150, CI-300), and an increase in muscle glycogen levels (CI-300). Antioxidant effects were observed in plasma by the decrease of TBARS and increase of nonprotein thiols levels (CI-600). The histopathological analysis showed a significant decrease in the liver fat area for C. iguanaea extract compared to group C(p < 0.001). Our results suggest that the biological effects of C. iguanaea extract could be related to the flavonoids that possibly exert antioxidant, enzymatic inhibitory, and insulin-mimetic effects.

References

  1. Aebi, H., 1984. Catalase in vitro. Methods Enzymol. 105, 121–126.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. American Heart Association, 2017. Prevention and Treatment of High Cholesterol (Hyperlipidemia). American Heart Association, Dallas.

    Google Scholar 

  3. Anantachoke, N., Kitphati, W., Mangmool, S., Bunyapraphatsara, N., 2015. Polyphenolic compounds and antioxidant activities of the leaves of Glochidion hypoleucum. Nat. Prod. Commun. 10, 479–482.

    PubMed  PubMed Central  Google Scholar 

  4. Aronow, W.A., 2013. Treatment of hypercholesterolemia. J. Clin. Exp. Cardiol. S1, 1–8.

    Google Scholar 

  5. Avelar, T.M.T., Storch, A.S., Castro, L.A., Azevedo, S.V.M.M., Ferraz, L., Lopes, P.F., 2015. Oxidative stress in the pathophysiology of metabolic syndrome: which mechanisms are involved? J. Bras. Patol. Med. Lab. 51, 231–239.

    CAS  Google Scholar 

  6. Balzan, S., Hernandes, A., Reichert, C.L., Donaduzzi, C., Pires, V.A., Gasparotto Junior, A., Cardozo Junior, E.L., 2013. Lipid-lowering effects of standardized extracts of Ilex paraguariensis in high-fat-diet rats. Fitoterapia 86, 115–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Borges, F.F.V., Machado, T.C., Cunha, K.S., Pereira, K.C., Costa, E.A., Paula, J.R., Chen-Chen, L., 2013. Assessment of thecytotoxic, genotoxic, and antigenotoxic activities of Celtis iguanaea (Jacq.) in mice. An. Acad. Bras. Ciênc. 85, 955–963.

    PubMed  PubMed Central  Google Scholar 

  8. Casiglia, E., Tikhonoff, V., 2007. Inflammatory and coagulative markers of atherosclerosis. Eur. Heart J. 28, 271–273.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chávez-Sánchez, L., Espinosa-Luna, J.E., Chávez-Rueda, K., Legorreta-Haquet, M.V., Montoya-Díaz, E., Blanco-Favela, F., 2014. Innate immune system cells in atherosclerosis. Arch. Med. Res. 45, 1–14.

    PubMed  PubMed Central  Google Scholar 

  10. Dahlqvist, A., 1984. Assay of intestinal disaccharidases. Scand.J. Clin. Lab. Invest. 44, 169–172.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Demir, B., Demir, E., Acıksarı, G., Uygun, T., Utku, I.K., Gedikbasi, A., Caglar, I.M.1., Pirhan, O., Tureli, H.O., Oflar, E., Ungan, I., Ciftci, S., Karakaya, O., 2014. The association between the epicardial adipose tissue thickness and oxidative stress parameters in isolated metabolic syndrome patients: a multimarker approach. Int. J. Endocrinol. 1, 1–9.

    Google Scholar 

  12. Driessler, F., Venstrom, K., Sabat, R., Asadullah, A., Schottelius, A.J., 2004. Molecular mechanisms of interleukin-10-mediated inhibition of NF-kB activity: a role for p50. Am. J. Clin. Exp. Immunol. 135, 164–173.

    Google Scholar 

  13. Ellman, G.L., 1959. Tissue sulphydryl groups. Arch. Biochem. Biophys. 82, 70–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. El-Newary, S.A., Sulieman, A.M., El-Attar, S.R., Sitohy, M.Z., 2016. Hypolipidemic and antioxidant activity of the aqueous extract from the uneaten pulp of the fruit from Cordia dichotoma in healthy and hyperlipidemic Wistar albino rats. J. Nat. Med. 70, 539–553.

    PubMed  PubMed Central  Google Scholar 

  15. Friedewald, W.T., Levy, R.I., Fredrickson, D.S., 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502.

    CAS  PubMed  Google Scholar 

  16. Glass, C.K., Witztum, J.L., 2001. Atherosclerosis the road ahead. Cell 104, 503–516.

    CAS  Google Scholar 

  17. Halliwell, B., Gutteridge, J.M., 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Han, X., Kitamoto, S., Lian, Q., Boisvert, W.A., 2009. Interleukin-10 facilitates both cholesterol uptake and efflux in macrophages. J. Biol. Chem. 284, 32950–32958.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Han, X., Kitamoto, S., Wang, H., Boisvert, W.A., 2010. Interleukin-10 overexpression in macrophages suppresses atherosclerosis in hyperlipidemic mice. FASEB J. 24, 2869–2880.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Kolehmainen, M., Mykkänen, H., Poutanen, K., 2010. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 11, 1365–1402.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Harvey, E.J., Ramji, D.P., 2005. Interferon-gamma and atherosclerosis: pro- or antiatherogenic? Cardiovasc. Res. 67, 11–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hernandez-Galicia, E., Aguilar-Contreras, A., Aguilar-Santamaria, L., Roman-Ramos, R., Chavez-Miranda, A.A., Garcia-Veja, L.M., Flores-Saenz, J.L., Alarcon-Aguilar, F.J., 2002. Studies on hypoglycemic activity of Mexican medicinal plants. Proc. West. Pharmacol. Soc. 45, 118–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Islam, B., Sharma, C., Adem, A., Aburawi, E., Ojha, S., 2015. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking. Drug. Des. Dev. Ther. 28, 4943–4951.

    Google Scholar 

  24. Jensen, J., Rustad, P.I., Kolnes, A.J., Lai, Y.C., 2011. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front. Physiol. 2, 1–11.

    Google Scholar 

  25. Kalek, H.D., Stellaard, F., Kruis, W., Paumgartner, G., 1984. Detection of increase bile acid excretion by determination of bile acid contend in simple stool samples. Clin. Chim. Acta 140, 85–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, J., Lee, I., Seo, J., Jung, M., Kim, Y., Yim, N., Bae, K., 2010. Vitexin, orientin and other flavonoids from Spirodela polyrhiza inhibit adipogenesis in 3T3-L1 cells. Phytother. Res. 24, 1543–1548.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kin, H.Y., Jeong, D.M., Jung, H.J., Jung, Y.J., Yokozawa, T., Choi, J.S., 2008. Hypolipidemic effects of Sophora flavescens and its constituents in polaxamer 407-induced hyperlipidemic and cholesterol-fed rats. Biol. Pharm. Bull. 31, 73–78.

    Google Scholar 

  28. Koriem, K.M.M., 2014. Antihyperlipidemic activity of the medicinal plants among Kadazanand Dusun communities in Sabah, Malaysia: a review. Asian Pac. J Trop. Biomed. 4, 768–779.

    Google Scholar 

  29. Kotani, K., Taniguchi, N., 2011. The association between reactive oxygen metabolites and metabolic syndrome in asymptomatic Japanese men. J. Clin. Med. Res. 3, 247–251.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Krisman, C.R., 1962. A method for the colorimetric estimation of glycogen with iodine. Anal. Biochem. 4, 14–23.

    Google Scholar 

  31. Ku, S.K., Kwak, S., Bae, J.S., 2014. Orientin inhibits high glucose-induced vascular inflammation in vitro and in vivo. Inflammation 37, 2164–2173.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lago, J.H.G., Arruda, A.C.T., Mernak, M., Barrosa, K.H., Martins, M.A., Tibério, I.F.L.C., Prado, CM., 2014. Structure-activity association of flavonoids in lung diseases. Molecules 19, 3570–3595.

    PubMed  PubMed Central  Google Scholar 

  33. Larsson, P.T., Hallerstam, S., Rosfors, S., Wallen, N.H., 2005. Circulating markers of inflammation are related to carotid artery atherosclerosis. Int. Angiol. 24, 43–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, W.H., Ku, S.K., Bae, J.S., 2014. Vascular barrier protective effects of orientin and isoorientin in LPS-induced inflammation in vitro and in vivo. Vascul. Pharmacol. 62, 3–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lewis, S.J., 2011. Lipid-lowering therapy: who can benefit? Vasc. Health Risk Manag. 7, 525–534.

    Google Scholar 

  36. Li, J., Gong, F., Li, F., 2016. Hypoglycemic and hypolipidemic effects of flavonoids from tartary buckwheat in type 2 diabetic rats. Biomed. Res. 27, 132–137.

    Google Scholar 

  37. Li, W., Zhang, M., Gu, J., Meng, Z., Zhao, L.C., Zheng, Y., Chen, L., Yang, G.L., 2012. Hypoglycemic effect of protopanaxadiol-type ginsenosides and compound K on type 2 diabetes mice induced by high-fat diet combining with streptozotocin via suppression of hepatic gluconeogenesis. Fitoterapia 83, 192–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  39. Martins, E.G.A., Pirani, J.R., 2009. Flora da Serra do Cipó, Minas Gerais: Cannabaceae. Bol. Bot. Univ. São Paulo 27, 247–251.

    Google Scholar 

  40. Martins, J.L., Rodrigues, O.R., Sousa, F.B., Fajemiroye, J.O., Galdino, P.M., Florentino, I.F., Costa, E.A., 2015. Medicinal species with gastroprotective activity found in the Brazilian Cerrado. Fundam. Clin. Pharmacol. 29, 238–251.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Martins, J.L.R., Rodrigues, O.R.P., Silva, D.M., Galdino, P.M., Paula, J.R., Romão, W., Costa, H.B., Vaz, B.G., Ghedini, P.C., Costa, E.A., 2014a. Mechanisms involved in the gastroprotective activity of Celtis iguanaea (Jacq.) Sargent on gastric lesions in mice. J. Ethnopharmacol. 155, 1616–1624.

    PubMed  PubMed Central  Google Scholar 

  42. Martins, J.L.R., Sousa, F.B., Fajemiroye, J.O., Ghedini, P.C., Ferreira, P.M., Costa, E.A., 2014b. Anti-ulcerogenic and antisecretory effects of Celtis iguanaea (Jacq.) Sargent hexane leaf extract. Rev. Bras. Plantas Med. 16, 250–255.

    Google Scholar 

  43. Misra, H.P., Fridovich, I., 1972. The role of superoxide anion in the auto-oxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170–3175.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mitsios, J.V., Papathanasiou, A.I., Goudevenos, J.A., Tselepis, A.D., 2010. The antiplatelet and antithrombotic actions of statins. Curr. Pharm. Des. 16, 3808–3814.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mocelin, R., Marcon, M., Santo, G.D., Zanatta, L., Sachett, A., Schönell, A.P., Bevilaqua, F., Giachini, M., Chitolina, R., Wildner, S.M., Duarte, M.M.M.F., Conterato, G.M.M., Piato, A.L., Gomes, D.B., Roman Junior, W.A., 2016. Hypolipidemic and antiatherogenic effects of Cynara scolymus in cholesterol-fed rats. Rev. Bras. Farmacogn. 26, 233–239.

    Google Scholar 

  46. Mohamed, G.A., Ibrahim, S.R.M., Elkhayat, E.S., El Dine, R.S., 2014. Natural anti-obesity agents. Bull. Fac. Pharm. Cairo Univ. 52, 269–284.

    Google Scholar 

  47. Moore, K.W., de Waal Malefyt, R., Coffman, R.L., O’Garra, A., 2001. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765.

    CAS  PubMed  Google Scholar 

  48. Nirosha, K., Divya, M., Vamsi, S., Sadiq, M., 2014. A review on hyperlipidemia. IJNTPS 4, 81–92.

    CAS  Google Scholar 

  49. Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pankaj, G.J., Savita, D.P., Nitin, G.H., Manoj, V.G., Sanjay, J.S., 2010. Hypolipidemic activity ofMoringa oleifera Lam., Moringaceae, on high fat diet induced hyper-lipidemia in albino rats. Rev. Bras. Farmacogn. 20, 969–973.

    Google Scholar 

  51. Paula, M.A., Couto, R.O., Bara, M.T.F., Rezende, M.H., Paula, J.R., Costa, E.A., 2010. Caracterizacão farmacognóstica da Celtis iguanaea (Jacq.) Sargent. Lat. Am. J. Pharm. 29, 526–533.

    Google Scholar 

  52. Pereira, D.F., Cazarolli, L.H., Lavado, C., Mengatto, V., Figueiredo, M.S.R.B., Guedes, A., Pizzolatti, M.G., Silva, F.R.M.B., 2011. Effects of flavonoids on α-glucosidase activity: potential targets for glucose homeostasis. Nutrition 27, 1161–1167.

    PubMed  PubMed Central  Google Scholar 

  53. Prophet, E.B., Mills, B., Arrington, J.B., Sobin, L.H., 1992. Laboratory Methods in Histotechnology. Armed Forces Institute of Pathology, Washington, DC.

    Google Scholar 

  54. Puttananjaiah, M.K., Dhale, M.A., Gaonkar, V., Keni, S., 2011. Reductase inhibitors demonstrate anti-atherosclerotic character due to their antioxidant capacity. Appl. Biochem. Biotechnol. 163, 215–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Quin~ones, M., Miguel, M., Aleixandre, A., 2013. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol. Res. 68, 125–131.

    CAS  Google Scholar 

  56. Ridker, P.M., Rifai, N., Rose, L., Buring, J.E., Cook, N.R., 2002. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N. Engl. J. Med. 347, 1557–1565.

    CAS  Google Scholar 

  57. Shimoda, H., Seki, E., Aitani, M., 2006. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement. Altern. Med. 6, 9–13.

    PubMed  PubMed Central  Google Scholar 

  58. Silva, C.S.P., Proenca, C.E.B., 2008. Uso e disponibilidade de recursos medicinais no município de Ouro Verde de Goiás, GO, Brasil. Acta Bot. Bras. 22, 481–492.

    Google Scholar 

  59. Sousa, F.B., Martins, J.LR., Florentino, I.F., Couto, R.O., Nascimento, M.V.M., Galdino, P.M., Ghedini, P.C., Paula, J.R., Costa, E.A., 2013. Preliminary studies ofgastropro-tective effect of Celtis iguanaea (Jacq.) Sargent leaves (Ulmaceae). Nat. Prod. Res. 27, 1102–1107.

    PubMed  PubMed Central  Google Scholar 

  60. Sposito, A.C., Caramelli, B., Fonseca, F.A.H., Bertolami, M.C., 2007. IV Diretriz Brasileira sobre Dislipidemias e Prevencão da Aterosclerose: Departamento de AterosclerosedaSociedade Brasileira deCardiologia.Arq. Bras. Cardiol. 88, 2–19.

    Google Scholar 

  61. Stroes, E.S., Thompson, P.D., Corsini, A., Vladutiu, G.D., Raal, F.J., Ray, K.K., Roden, M., Stein, E., Tokgõzoglu, L., Nordestgaard, B.G., Bruckert, E., Krauss, R.M., Laufs, U., Santos, R.D., Mãrz, W., Newman, C.B., Chapman, M.J., Ginsberg, H.N., Chapman, M., Ginsberg, H.N., Backer, G., Catapano, A.L., Hegele, R.A., Hovingh, G.K., Jacobson, T.A., Leiter, L., Mach, F., Wiklund, O., 2015. Statin-associated muscle symptoms: impact on statin therapy European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur. Heart J. 18, 2–13.

    Google Scholar 

  62. Tene, V., Malagóri, O., Finzi, P.V., Vidari, G., Armijos, C., Zaragoza, T., 2007. Anethnob-otanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. J. Ethnopharmacol. 111, 63–81.

    PubMed  PubMed Central  Google Scholar 

  63. Toma, A., Makonnen, E., Mekonnen, Y., Debella, A., Addisakwattana, S., 2014. Intestinal α-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcholic extract ofMoringa stenopetala leaves. BMC Complement. Altern. Med. 14, 1–5.

    Google Scholar 

  64. Trevisan, R.R., Lima, C.P., Miyazaki, C.M.S., Pesci, F.A., Silva, C.B., Hirota, B.C.K., Lordello, A.L.L., Miguel, O.G., Miguel, M.D., Zanin, S.M.W., 2012. Evaluation of the phytotoxic activity focused on the allelopathic effect of the extract from the bark of Celtis iguanaea (Jacq.) Sargent Ulmaceae and purification oftwoterpenes. Rev. Bras. Plantas Med. 14, 494–499.

    CAS  Google Scholar 

  65. Tzoulaki, I., Murray, G.D., Lee, A.J., Rumley, A., Lowe, G.D., Fowkes, F.G., 2005. C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population. Edinburgh Artery Study. Circulation 112, 976–983.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Vaddi, K., Nicolini, F.A., Mehta, P., Metha, J.L., 1994. Increased secretion of tumor necrosis factor-alpha and interferon-gamma by mononuclear leukocytes inpatients with ischemic heart disease. Relevance in superoxide anion generation. Circulation 90, 694–699.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Venugopala Rao, A., Ramakrishnan, S., 1975. Indirect assessment of hydroxymethylglutaryl-CoA reductase (NADPH) activity in liver tissue. Clin. Chem. 21, 1523–1525.

    Google Scholar 

  68. Waltenberger, B., Mocan, A., Smejkal, K., Heiss, E.H., Atanasov, A.G., 2016. Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules 21, 1–33.

    Google Scholar 

  69. WHO, 2016a. Cardiovascular Diseases (CVDs). World Health Organization, Geneva.

    Google Scholar 

  70. WHO, 2016b. Global Report on Diabetes. World Health Organization, Geneva.

    Google Scholar 

  71. Xia, W., Sun, C., Zhao, Y., Wu, L., 2011. Hypolipidemic e antioxidant activities of Sanchi (Radix Notoginseng) in rats with a high fat diet. Phytomedicine 18, 516–520.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoo, H.Y., Kum, S.K., Lee, T.H., Bae, J.S., 2014. Orientin inhibits HMGB1-induced inflammatory responses in HUVECs and in murine polymicrobial sepsis. Inflammation 37, 1705–1717.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Youn, J.Y., Siu, K.L., Lob, H.E., Itani, H., Harrison, D.G., Cai, H., 2014. Role of vascular oxidative stress in obesity and metabolic syndrome. Diabetes 63, 2344–2355.

    PubMed  PubMed Central  Google Scholar 

  74. Zhang, Y., Chen, S., Wei, C., Gong, H., Li, L., Ye, X., 2016. Chemical and cellular assays combined with in vitro digestion to determine the antioxidant activity of flavonoids from Chinese bayberry (Myrica rubra Sieb. et Zucc.) Leaves. PLOS ONE, https://doi.org/10.1371/journal.pone.0167484.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Walter A. Roman Junior.

Additional information

Authors’ contributions

All authors contributed substantially to the work reported. BZ and WARJ conceived and designed the experiments, analyzed the data and wrote the paper; DBG, VSC, KAPD, APS, CF, PN, FB, RC,AS, CP, TB, NSA, JCOM, FC, GS, ATR and FCZ performed the experiments; LGM, APZ, SMW, LZ, MMMFD, GMMC and CQR performed the experiments and contributed with materials, analysis tools and wrote the paper.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zanchet, B., Gomes, D.B., Corralo, V.S. et al. Effects of hydroalcoholic extract of Celtis iguanaea on markers of cardiovascular diseases and glucose metabolism in cholesterol-fed rats. Rev. Bras. Farmacogn. 28, 80–91 (2018). https://doi.org/10.1016/j.bjp.2017.12.001

Download citation

Keywords

  • Medicinal plants
  • Flavonoids
  • Hypoglycemic
  • Hypolipidemic
  • Antiatherogenic