Xanthorrhizol contents, α-glucosidase inhibition, and cytotoxic activities in ethyl acetate fraction of Curcuma zanthorrhiza accessions from Indonesia

Abstract

Curcuma zanthorrhiza Roxb., Zingiberaceae, a species from Indonesia with xanthorrhizol as the major metabolite, has been used as a folk medicine in several of pharmacological activities. This work aimed to evaluate the xanthorrhizol contents, α-glucosidase inhibition, and cytotoxic activities in ethyl acetate fraction from accessions of C. zanthorrhiza. High-performance liquid chromatography investigated xanthorrhizol content with the standard. Pharmacological activities were evaluated by inhibition of α-glucosidase, the brine shrimp lethality test, and anticancer activity. The ethyl acetate fraction yield varied from 8.24% (Karanganyar) to 13.13% (Sukabumi). The xanthorrhizol contents were found to be in the range 43.55% to 47.99% with Ngawi and Wonogiri promising accessions having the lowest and highest value, respectively. IC50 value for α-glucosidase inhibition ranged from 339.05 μg/ml (Karanganyar) to 455.01 μg/ml (Ngawi). LC50 value for cytotoxic activities ranged from 33.25 μg/ml (Ngawi) to 42.28 μg/ml (Karanganyar) in brine shrimp lethality test, 3.10 μg/ml (Karanganyar) to 9.85 μg/ml (cursina-III) in Vero cell, and 1.17 μg/ml (Ngawi) to 6.83 μg/ml (Sukabumi) in MCF-7 cell. In this study, C. zanthorrhiza accessions have a high in xanthorrhizol contents and cytotoxic activities that showed a high potential of studied accessions for breeding programs on a commercial scale.

References

  1. Anggakusuma, Y., Lee, M., Hwang, J.K., 2009. Estrogenic activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. Biol. Pharm. Bull. 32, 1892–1897.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Awin, T., Mediani, A., Shaari, K., Faudzi, S.M.M., Sukari, M.A.H., Lajis, N., Abas, F., 2016. Phytochemical profiles and biological activities of Curcuma species subjected to different drying methods and solvent systems: NMR-based metabolomics approach. Ind. Crops Prod. 94, 342–352.

    CAS  Google Scholar 

  3. Campos, M.G., Oropeza, M.V., Villanueva, T., Aguilar, M.I., Delgado, G., Ponce, H.A., 2000. Xanthorrhizol induces endothelium-independent relaxation of rat thoracic aorta. Life Sci. 67, 327–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheah, Y.H., Azimahtol, H.L.P., Abdullah, N.R., 2006. Xanthorrhizol exhibits antiproliferative activity on MCF-7 breast cancer cells via apoptosis induction. Anticancer Res. 26, 4527–4534.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheah, Y.H., Nordin, F.J., Tee, T.T., Azimahtol, H.L., Abdullah, N.R., Ismail, Z., 2008. Antiproliferative property and apoptotic effect of xanthorrhizol on MDA-MB-231 breast cancer cells. Anticancer Res. 28, 3677–3689.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chung, W.Y., Park, J.H., Kim, M.J., Kim, H.O., Hwang, J.K., Lee, S.K., Park, K.K., 2007. Xanthorrhizol inhibits 12-O-tetradecanoylphorbol-13-acetate-induced acute inflammation and two-stage mouse skin carcinogenesis by blocking the expression of ornithine decarboxylase, cyclooxygenase-2 and inducible nitric oxide synthase through mitogen-activated protein kinases and/or the nuclear factor-kB. Carcinogenesis 28, 1224–1231.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Devaraj, S., Esfahani, A.S., Ismail, S., Ramanathan, S., Yam, M.F., 2010. Evaluation of the antinociceptive activity and acute oral toxicity of standardized ethanolic extract of the rhizome of Curcuma xanthorrhiza Roxb. Molecules 15, 2925–2934.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Handayani, S., Hermawan, A., Meiyanto, E., Udin, Z., 2013. Induction of apoptosis on MCF-7 cells by Selaginella fractions. J. Appl. Pharm. Sci. 3, 31–34.

    Google Scholar 

  9. Hasimum, P., Adnyana, I., Valentina, R., Lisnasari, E., 2016. Potential alphα-glucosidase inhibitor from selected Zingiberaceae familiy. Asian J. Pharm. Clin. Res. 9, 164–167.

    Google Scholar 

  10. Hong, K.O., Hwang, J.K., Park, K.K., Kim, S.H., 2005. Phosphorylation of c-Jun N-terminal Kinases (JNKs) is involved in the preventive effect of xanthorrhizol on cisplatin-induced hepatotoxicity. Arch. Toxicol. 79, 231–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hwang, J., Shim, J., Pyun, Y., 2000. Antibacterial activity of xanthorrhizol from Curcuma xanthorrhiza against oral pathogens. Fitoterapia 71, 321–323.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jantan, I., Raweh, S.M., Sirat, H.M., Jamil, S., Yasin, Y.M., Jalil, J., Jamal, J.A., 2008. Inhibitory effect of compounds from Zingiberaceae species on human platelet aggregation. Phytomedicine 15, 306–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jantan, I., Saputri, F.C., Qaisar, M.N., Buang, F., 2012. Correlation between chemical composition of Curcuma domestica and Curcuma xanthorrhiza and their antioxidant effect on human low-density lipoprotein oxidation. Evid. Based Complement. Alternat. Med. ID 438356, 1–10.

    Google Scholar 

  14. Kang, Y.J., Park, K.K., Chung, W.Y., Hwang, J.K., Lee, S.K., 2009. Xanthorrhizol, a natural sesquiterpenoid, induces apoptosis and growth arrest in HCT116 human colon cancer cells. J. Pharmacol. Sci. 111, 276–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, J.Y., An, J.M., Chung, W.Y., Park, K.K., Hwang, J.K., Kim, D.S., Seo, S.R., Seo, J.T., 2013. Xanthorrhizol induces apoptosis through ROS-mediated MAPK activation in human oral squamous cell carcinoma cells and inhibits DMBA-induced oral carcinogenesis in hamsters. Phytother. Res. 27, 493–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, M.B., Kim, C., Song, Y., Hwang, J.K., 2014. Antihyperglycemic and antiinflammatory effects of standardized Curcuma xanthorrhiza Roxb. extract and its active compound xanthorrhizol in high-fat diet-induced obese mice. Evid. Based Complement. Alternat. Med., https://doi.org/10.1155/2014/205915.

    Google Scholar 

  17. Kim, S.H., Hong, K.O., Chung, W.Y., Hwang, J.K., Park, K.K., 2004. Abrogation of cisplatin-induced hepatotoxicity in mice by xanthorrhizol is related to its effect on the regulation of gene transcription. Toxicol. Appl. Pharmacol. 196, 346–355.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, S.H., Hong, K.O., Hwang, J.K., Park, K.K., 2005. Xanthorrhizol has a potential to attenuate the high dose cisplatin-induced nephrotoxicity in mice. Food Chem. Toxicol. 43, 117–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lim, C.S., Jin, D.Q., Mok, H., Oh, S.J., Lee, J.U., Hwang, J.K., Ha, I., Han, J.S., 2005. Antioxidant and antiinflammatory activities of xanthorrhizol in hippocampal neurons and primary cultured microglia. J. Neurosci. Res. 82, 831–838.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mayur, B., Sancheti, S., Shruti, S., Sung-Yum, S., 2010. Antioxidant and α-glucosidase inhibitory properties of Carpesium abrotanoides L. J. Med. Plant Res. 4, 1547–1553.

    Google Scholar 

  21. Meyer, B., Ferrigni, N., Putnam, J., Jacobsen, L., Nichols, D., McLaughlin, J.J.L., 1982. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med. 45, 31–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Moghaddam, M., Pirbalouti, A.G., 2017. Agro-morphological and phytochemical diversity of Iranian Cuminum cyminum accessions. Ind. Crops Prod. 99, 205–213.

    CAS  Google Scholar 

  23. Musfiroh, I., Muchtaridi, M., Muhtadi, A., Diantini, A., Hasanah, A.N., Udin, L.Z., Susi-lawati, Y., Mustarichie, R., Kartasasmita, R.E., Ibrahim, S., 2013. Cytotoxicity studies of xanthorrhizol and its mechanism using molecular docking simulation and pharmacophore modelling. J. Appl. Pharm. Sci. 3, 7–15.

    Google Scholar 

  24. Nurcholis, W., Ambarsari, L., Purwakusumah, E.D., 2016a. Curcumin analysis and cytotoxic activities of some Curcuma xanthorrhiza Roxb. accessions. Int. J. Pharm Tech Res. 9, 175–180.

    CAS  Google Scholar 

  25. Nurcholis, W., Khumaida, N., Syukur, M., Bintang, M., 2016b. Variability of curcumi-noid content and lack of correlation with cytotoxicity in ethanolic extracts from 20 accessions of Curcuma aeruginosa RoxB. Asian Pac. J. Trop. Dis. 6, 887–891.

    Google Scholar 

  26. Nurcholis, W., Khumaida, N., Syukur, M., Bintang, M., 2016c. Variability of total phenolic and flavonoid content and antioxidant activity among 20 Curcuma aeruginosa Roxb. accessions of Indonesia. Asian J. Biochem. 11, 142–148.

    CAS  Google Scholar 

  27. Nurcholis, W., Purwakusumah, E.D., Rahardjo, M., Darusman, L.K., 2012. Variation of bioactive compound and bioactivities of three Temulawak promising lines at different geographical conditions. J. Agron. Indones. 40, 153–159.

    Google Scholar 

  28. Oliveira, G.L., Moreira, D.D.L., Mendes, A.D.R., Guimarães, E.F., Figueiredo, L.S., Kaplan, M.A.C., Martins, E.R., 2013. Growth study and essential oil analysis of Piper aduncum from two sites of Cerrado biome of Minas Gerais State. Brazil. Rev. Bras. Farmacogn. 23, 743–753.

    CAS  Google Scholar 

  29. Oon, S.F., Nallappan, M., Tee, T.T., Shohaimi, S., Kassim, N.K., Sa’ariwijaya, M.S.F., Cheah, Y.H., 2015. Xanthorrhizol: a review of its pharmacological activities and anticancer properties. Cancer Cell Int. 15, 100.

    PubMed  PubMed Central  Google Scholar 

  30. Ponce-Monter, H., Campos, M.G., Aguilar, I., Delgado, G., 1999. Effect of xanthorrhizol, xanthorrhizol glycoside and trachylobanoic acid isolated from cachani complex plants upon the contractile activity of uterine smooth muscle. Phy-tother. Res. 13, 202–205.

    CAS  Google Scholar 

  31. Rukayadi, Y., Han, S., Yong, D., Hwang, J.K., 2011. In vitro activity of xanthorrhizol against Candida glabrata, C guilliermondii, and C parapsilosis biofilms. Med. Mycol. 49, 1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rukayadi, Y., Hwang, J.K., 2006. In vitro activity of xanthorrhizol against Streptococcus mutans biofilms. Lett. Appl. Microbiol. 42, 400–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rukayadi, Y., Hwang, J.K., 2013. In vitro activity of xanthorrhizol isolated from the rhizome of Javanese turmeric (Curcuma xanthorrhiza Roxb.) against Candida albicans biofilms. Phytother. Res. 27, 1061–1066.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rukayadi, Y., Yong, D., Hwang, J.K., 2006. In vitro anticandidal activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. J. Antimicrob. Chemother. 57, 1231–1234.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Salea, R., Widjojokusumo, E., Veriansyah, B., Tjandrawinata, R.R., 2014. Optimizing oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide. J. Food Sci. Technol. 51, 2197–2203.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sivasothy, Y., Loo, K.Y., Leong, K.H., Litaudon, M., Awang, K., 2016. A potent alphα-glucosidase inhibitor from Myristica cinnamomea King. Phytochemistry 122, 265–269.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Suksamrarn, A., Eiamong, S., Piyachaturawat, P., Charoenpiboonsin, J., 1994. Phenolic diarylheptanoids from Curcuma xanthorrhiza. Phytochemistry 36, 1505–1508.

    CAS  Google Scholar 

  38. Tanamatayarat, P., 2016. Antityrosinase, antioxidative activities, and brine shrimp lethality of ethanolic extracts from Protium serratum (Wall. ex Colebr.). Engl. Asian Pac. J. Trop. Biomed. 6, 1050–1055.

    Google Scholar 

  39. Udin, Z., 2013. Cytotoxic activity ofxanthorrhizol from Curcuma xanthorrhiza RoxB.’S volatile oil toward YMB-1 breast cancer cell. J. KimiaTerap. Indones. 15, 23–29.

    Google Scholar 

  40. Wu, Y., Zhou, Q., Chen, X.Y., Li, X., Wang, Y., Zhang L., J., 2017. Comparison and screening of bioactive phenolic compounds in different blueberry cultivars: evaluation of anti-oxidation and α-glucosidase inhibition effect. Food Res. Int. 100, 312–324.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zwaving, J.H., Bos, R., 1992. Analysis of the essential oils of five Curcuma species. Flavour Fragr. J. 7, 19–22.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Waras Nurcholis.

Additional information

Author’s contributions

WN contribution included collecting samples, designing laboratory work, analyzing the results, supervision of the laboratory work, and preparing the paper. AAM contribution included collecting samples and performing laboratory work. LA contribution included designing laboratory work, analyzing the results and preparing the paper. All the authors have read the final paper and approved the submission of the manuscript.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nurcholis, W., Munshif, A.A. & Ambarsari, L. Xanthorrhizol contents, α-glucosidase inhibition, and cytotoxic activities in ethyl acetate fraction of Curcuma zanthorrhiza accessions from Indonesia. Rev. Bras. Farmacogn. 28, 44–49 (2018). https://doi.org/10.1016/j.bjp.2017.11.001

Download citation

Keywords

  • Accessions
  • Cytotoxic
  • Plant breeding
  • Xanthorrhizol
  • α-glucosidase