Anti-inflammatory and antioxidant activities of the Impatiens noli-tangere and Stachys officinalis polyphenolic-rich extracts

Abstract

This study evaluated the anti-inflammatory and antioxidant activities of Impatiens noli-tangere L., Balsaminaceae, and of Stachys officinalis L., Lamiaceae, polyphenolic-rich extracts obtained by nanofiltration process. Results showed the great potential and efficiency of the nanofiltration process to concentrate the herbal extract’s main polyphenolic compounds (over 91% phenolic acids and flavonoids retention). S. officinalis polyphenolic-rich extracts had high antioxidant activities (IC50 2.5 μg/ml) compared to I. noli-tangere polyphenolic-rich extracts (IC50 19.3 μg/ml) and similar with that of ascorbic acid. Polyphenolic-rich extracts were investigated to determine the pro-inflammatory enzymes lipoxygenase, cyclooxygenase-1 and cyclooxygenase-2 and their inhibitory activity. Furthermore, high inhibitory activity of the examined extracts was reported for the first time, for both lipoxygenase (IC50 2.46 and 1.22 μg/ml for I. noli-tangere and S. officinalis polyphenolic-rich extracts, respectively), cyclooxygenase-1 (IC50 18.4 and 10.1 μg/ml for I. noli-tangere and S. officinalis polyphenolic-rich extracts, respectively) and cyclooxygenase-2 (IC50 = 1.9 and 1.2 mg/ml for I. noli-tangere and S. officinalis polyphenolic-rich extracts, respectively). Additionally, the in vivo studies showed that S. officinalis polyphenolic-rich extract has a higher anti-inflammatory effect, the hind-paw volume employed for both models determined that I. noli-tangere polyphenolic-rich extract and is also higher than that of diclofenac. It was noticed that their anti-inflammatory effect persists for more than 24 h. The I. noli-tangere and S. officinalis polyphenolic-rich extracts exert anti-inflammatory and antioxidant activities and these properties can be at least partly assigned to the presence of ursolic acid, caffeic acid, rosmarinic acid, quercetin and also anthocyanidins (genistin). The obtained results indicate the anti-inflammatory potential of the studied herbal extracts.

References

  1. Amessis-Ouchemoukh, N., Madani, K., Falé, P.L.V., Serralheiro, M.L., Araújo, M.E.M., 2014. Antioxidant capacity and phenolic contents of some mediterranean medicinal plants and their potential role in the inhibition of cyclooxygenase-1 and acetylcholinesterase activities. Ind. Crops Prod. 53, 6–15.

    CAS  Google Scholar 

  2. Albu Birsan, C., Eremia, S.A.V., Penu, R., Vasilescu, I.M.I., Litescu, S.C., Radu, G.L., 2017. Characterization of the phenolics and free-radical scavenging of Romanian red wine. Anal. Lett, https://doi.org/10.1080/00032719.2016.1192641.

    Google Scholar 

  3. Ardelean, A., Mohan, Gh., 2008. Flora medicinala a Romaniei. Ed. ALL, Bucharest.

    Google Scholar 

  4. Arriola, N.A., dos Santos, G.D., Prudêncio, E.S., Vitali, L., Petrus, J.C.C., Castanho Amboni, R.D.M., 2014. Potential of nanofiltration forthe concentration of bioac-tive compounds from watermelon juice. Int. J. FoodSci.Technol. 49, 2052–2060.

    CAS  Google Scholar 

  5. Arulselvan, P., Fard, M.T., Tan, W.S., Gothai, S., Fakurazi, S., Norhaizan, M.E., Kumar, S.S., 2016. Role ofantioxidants and natural products in inflammation. Oxid. Med. Cell. Longev., https://doi.org/10.1155/2016/5276130.

    Google Scholar 

  6. Bondet, V., Brand-Williams, W., Berset, C., 1997. Kinetics and mechanisms of antioxidant activity using the DPPH* free radical method. LWT - Food Sci. Technol. 30, 609–615.

    CAS  Google Scholar 

  7. Bouarroudja, K., Tamendjaria, A., Larbatb, R., 2016. Quality, composition and antioxidant activity of Algerian wild olive (Olea europaea L. subsp. oleaster) oil. Ind. Crops Prod. 69, 21–28.

    Google Scholar 

  8. Cai, Y., Luo, Q., Sun, M., Corke, H., 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74, 2157–2184.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Conidi, C., Cassano, A., Drioli, E., 2012. Recovery of phenolic compounds from orange press liquor by nanofiltration. Food Bioprod. Process. 90, 867–874.

    CAS  Google Scholar 

  10. Choi, B.J., Kim, C.W., 2002. Studies on the constituents of Impatiens noli-tangere L. Korean J. Pharmacogn. 33, 263–266.

    CAS  Google Scholar 

  11. Clark, R.A.F., 1995. Wound repair: overview and general considerations. In: The Molecular Cellular Biology of Wound Repair, 2nd edition. Plenum Press, New York, pp. 513–560.

    Google Scholar 

  12. Cristea, V., Deliu, C., Oltean, B., Brummer, A., Albu, C., Radu, G.L., 2009. Soilless cultures for pharmaceutical use and biodiversity conservation. Acta Hort. 843, 157–164.

    Google Scholar 

  13. Fitzmaurice, S.D., Sivamani, R.K., Isseroff, R.R., 2011. Antioxidant therapies for wound healing: a clinical guide to currently commercially available products. Skin Pharmacol. Phys. 24, 113–126.

    CAS  Google Scholar 

  14. Ganeshpurkar, A., Ajay, K., Saluja, A.K., 2017. The pharmacological potential of rutin. Saudi Pharm. J. 25, 149–164.

    PubMed  PubMed Central  Google Scholar 

  15. Granica, S., Czerwinska, M.E., Piwowarski, J.P., Ziaja, M., Kiss, A.K., 2013. Chemical composition, antioxidative and antiinflammatory activity of extracts prepared from aerial parts of Oenothera biennis L. and Oenothera paradoxa Hudziok obtained after seeds cultivation. J. Agric. Food Chem. 61, 801–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gulati, O.P., Sharma, S.C., Hammersen, F., 1983. Hemodynamic, biochemical and morphological changes in the dextran and D-galactosamine-induced edemas in rats. Arch. Int. Pharmacodyn. Ther. 263, 272–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hayashi, S., Sumi, Y., Ueno, N., Murase, A., Takada, J., 2011. Discovery of a novel COX-2 inhibitor as an orally potent anti-pyretic and antiinflammatory drug: design, synthesis, and structure-activity relationship. Biochem. Pharmacol. 82, 755–768.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Háznagy-Radnai, E., Balogh, Ú., Czigle, S., Máthé, I., Hohmann, J., Blazsõ, G., 2012. Anti inflammatory activities of hungarian stachys species and their iridoids. Phytother. Res. 26, 505–509.

    PubMed  PubMed Central  Google Scholar 

  19. Ikeda, Y., Murakami, A., Ohigashi, H., 2008. Ursolic acid: an anti- and proinflammatory triterpenoid. Mol. Nutr. Food Res. 52, 26–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jaric, S., Kostic, O., Mataruga, Z., Pavlovic, D., Pavlovic, M., Mitrovic, M., Pavlovic, P., 2017. Traditional wound-healing plants used in the Balkan region (Southeast Europe). J. Ethnopharmacol., https://doi.org/10.1016/jjep.2017.09.018.

    Google Scholar 

  21. Jovanovic, D., Fernandes, J., Martel-Pelletier, J., Jolicoeur, F., Reboul, P., Laufer, S., Tries, S., Pelletier, J., 2001. In vivo dual inhibition of cyclooxygenase and lipoxygenase by ML-3000 reduces the progression of experimental osteoarthritis: suppression of collagenase 1 and interleukin-1beta synthesis. Arthritis Rheum. 44, 2320–2330.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kashyap, D., Tuli, H.S., Sharma, A.K., 2016. Ursolic acid (UA): a metabolite with promising therapeutic potential. Life Sci. 146, 201–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, S., Jeong, K., Cho, S.K., Park, J., Park, W., 2016. Caffeic acid, morin hydrate and quercetin partially attenuate sulfur mustard-induced cell death by inhibiting the lipoxygenase pathway. Mol. Med. Rep. 14, 4454–4460.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin, J.Y., Tang, C.Y., 2007. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 101, 140–147.

    CAS  Google Scholar 

  25. Liu, J., 1995. Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol 49, 57–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mahajan, A., Tandon, V.R., 2004. Antioxidants and rheumatoid arthritis. J. Indian Rheumatol. Assoc. 12, 139–142.

    Google Scholar 

  27. Martel-Pelletier, J., Lajeunesse, D., Reboul, P., Pelletier, J., 2003. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal antiinflammatory drugs. Ann. Rheum. Dis. 62, 501–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Motoyama, K., Tanida, Y., Hata, K., Hayashi, T., Hashim, I.I.A., Higashi, T., Ishit-suka, Y., Kondo, Y., Irie, T., Kaneko, S., Arima, H., 2016. Antiinflammatory effects of novel polysaccharide sacran extracted from cyanobacterium Aphan-othece sacrum in various inflammatory animal models. Biol. Pharm. Bull. 39, 1172–1178.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mulabagal, V., Lang, G.A., DeWitt, D.L., Dalavoy, S.S., Nair, M.G., 2009. Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J. Agric. Food Chem. 57, 123–1246.

    Google Scholar 

  30. Muller, K., 1994. 5-Lipoxygenase and 12-lipoxygenase: attractive targets forthe development of novel antipsoriatic drugs. Arch Pharm. 327, 3–19.

    CAS  Google Scholar 

  31. Mundhava, S.G., Mehta, D.S., Thaker, S.J., 2016. A comparative study to evaluate antiinflammatory and analgesic activity of commonly used proteolytic enzymes and their combination with diclofenac in rats. Int. J. Pharm. Sci. Res. 7, 2615–2619.

    CAS  Google Scholar 

  32. Nagasaka, R., Chotimarkorn, C., Shafiqul, I.M., Hori, M., Ozaki, H., Ushio, H., 2007. Antiinflammatory effects of hydroxycinnamic acid derivatives. Biochem. Biophys. Res. Commun. 358, 615–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Njenga, E.W., Viljoen, A.M., 2006. In vitro 5-lipoxygenase inhibition andanti-oxidant activity of Eriocephalus L. (Asteraceae) species. S. Afr. J. Bot. 72, 637–641.

    CAS  Google Scholar 

  34. Paun, G., Neagu, E., Albu, C., Moroeanu, V., Radu, G.L., 2016. Antioxidant activity and inhibitory effect of polyphenolic-rich extract from Betonica officinalis and Impatiens noli-tangere herbs on key enzyme linked to type 2 diabetes. J. Taiwan Inst. Chem. Eng. 60, 1–7.

    CAS  Google Scholar 

  35. Patel, K., Jain, A., Patel, K.D., 2013. Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’: a concise report. J. Acute Dis. 2, 169–178.

    Google Scholar 

  36. Petrovic, N., Murray, M., 2010. Using N, N, N’, N’-tetramethyl-p-phenylenediamine (TMPD) to assay cyclooxygenase activity in vitro. Methods Mol. Biol. 594, 129–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rana, M.S., Walia, R., Dixit, A., Raina, K., 2016. To compare and evaluate the anti-inflammatory efficacy ofTerminalia arjuna (aqueous extract of bark) with diclofenac sodium on rats. Int. J. Basic Clin. Pharmacol. 5, 692–695.

    Google Scholar 

  38. Rigat, M., Vallès, J., Dambrosio, U., Gras, A., Iglésias, J., Garnatje, T., 2015. Plants with topical uses in the ripollès district (pyrenees, catalonia, iberian peninsula): ethnobotanical survey and pharmacological validation in the literature. J. Ethnopharmacol. 164, 162–179.

    PubMed  PubMed Central  Google Scholar 

  39. Savla, U., Appel, H.J., Sporn, P.H., Waters, CM., 2001. Prostaglandin E2 regulates wound closure in airway epithelium. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L421–L431.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Šerá, B., Vrchotová, N., Tříska, J., 2005. Phenolic compounds in the leaves of alien and native Impatiens plants. In: Alford, D.V., Backhaus, G.F. (Eds.), Plant Protection and Plant Health in Europe: Introduction and Spread of Invasive Species. British Crop Production Council, Alton, pp. 281–282.

    Google Scholar 

  41. Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152–178.

    CAS  Google Scholar 

  42. Šliumpaite, I., Venskutonis, P.R., Murkovic, M., Ragazinskiene, O., 2013. Antioxidant properties and phenolic composition ofwood betony (Betonica officinalis L., syn. Stachys officinalis L). Ind. Crops Prod. 50, 715–722.

    Google Scholar 

  43. Steinhilber, D., Hofmann, B., 2014. Recent advances in the search for novel 5-lipoxygenase inhibitors. Basic Clin. Pharmacol. Toxicol. 114, 70–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tambewagh, U.U., Kandhare, A.D., Honmore, V.S., Kadam, P.P., Khedkar, V.M., Bodhankar, S.L., Rojatkar, S.R., 2017. Anti-inflammatory and antioxidant potential of guaianolide isolated from cyathocline purpurea: role of COX-2 inhibition. Int. Immunopharmacol. 52, 110–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M., Telser, J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Vogl, S., Picker, P., Mihaly-Bison, J., Fakhrudin, N., Atanasov, A.G., Heiss, E.H., Wawrosch, C., Reznicek, G., Dirsch, V.M., Saukel, J., Kopp, B., 2013. Ethnopharmacological in vitro studies on Austria’s folk medicine - an unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. J. Ethnopharmacol. 149, 750–771.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gabriel Lucian Radua.

Additional information

Authors’ contributions

GP was conducted research and also was involved in preparation of polyphenolic-rich extracts by nanofiltration and investigate the anti-inflammatory response by enzymes inhibition; EN and VM were involved in the preparation and spectrophotometric characterization; CA was involved in HPLC analysis; T-MU performed the botanical identification; AZ, SN, CC conducted the in vivo anti-inflammatory assays; GP and GLR performed data analyses and wrote the manuscript. All the authors have read the final manuscript and approved the submission.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paun, G., Neagu, E., Moroeanu, V. et al. Anti-inflammatory and antioxidant activities of the Impatiens noli-tangere and Stachys officinalis polyphenolic-rich extracts. Rev. Bras. Farmacogn. 28, 57–64 (2018). https://doi.org/10.1016/j.bjp.2017.10.008

Download citation

Keywords

  • Polyphenolic-rich extract
  • Nanofiltration
  • Antioxidant
  • Lipoxygenase
  • Cyclooxygenase
  • In vivo anti-inflammatory