Chrysosplenetin, in the absence and presence of artemsininin, alters breast cancer resistance protein-mediated transport activity in Caco-2 cell monolayers using aristolochic acid I as a specific probe substrate

Abstract

The present study describes the impact of chrysosplenetin, in the absence and presence of artemisinin, on in vitro breast cancer resistance protein-mediated transport activity in Caco-2 cell monolayers using aristolochic acid I as a specific probe substrate. We observed that novobiocin, a known breast cancer resistance protein active inhibitor, increased Papp (AP-BL) of aristolochic acid I 3.13 fold (p < 0.05) but had no effect on Papp (BL-AP). Efflux ratio (PBA/PAB) declined 4.44 fold (p < 0.05). Novobiocin, consequently, showed a direct facilitation on the uptake of AAI instead of its excretion. Oppositely, both artemisinin and chrysosplenetin alone at dose of 10 μM significantly decreased Papp (BL-AP) instead of Papp (AP-BL). Chrysosplenetin alone attenuated the efflux ratio, which was suggestive of being as a potential breast cancer resistance protein suppressant. Oddly, Papp (BL-AP) as well as efflux ratio were respectively enhanced 2.52 and 2.58 fold (p < 0.05), when co-used with artemisinin and chrysosplenetin in ratio of 1:2. The potential reason remains unclear; it might be relative to binding sites competition between artemisinin and chrysosplenetin or the homodimer/oligomer formation of breast cancer resistance protein bridged by disulfide bonds, leading to an altered in vitro breast cancer resistance protein-mediated efflux transport function.

References

  1. Alcantara, L.M., Kim, J., Moraes, C.B., Franco, C.H., Franzoi, K.D., Lee, S., Freitas-Junior, L.H., Ayong, L.S., 2013. Chemosensitization potential of P-glycoprotein inhibitors in malaria parasites. Exp. Parasitol. 134, 235–243.

    CAS  Article  PubMed Central  Google Scholar 

  2. Allikmets, R., Schriml, L.M., Hutchinson, A., Romano-Spica, V., Dean, M., 1998. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 58, 5337–5339.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Amaratunga, C., Sreng, S., Suon, S., Phelps, E.S., Stepniewska, K., Lim, P., Zhou, C., Mao, S., Anderson, J.M., Lindegardh, N., Jiang, H., Song, J., Su, X.Z., White, N.J., Dondorp, A.M., Anderson, T.J., Fay, M.P., Mu, J., Duong, S., Fairhurst, R.M., 2012. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect. Dis. 12, 851–858.

    Article  PubMed Central  Google Scholar 

  4. Ashley, E.A., Dhorda, M., Fairhurst, R.M., Amaratunga, C., Lim, P., Suon, S., Sreng, S., Anderson, J.M., Mao, S., Sam, B., Sopha, C., Chuor, C.M., Nguon, C., Sovannaroth, S., Pukrittayakamee, S., Jittamala, P., Chotivanich, K., Chutasmit, K., Suchatsoonthorn, C., Runcharoen, R., Hien, T.T., Thuy-Nhien, N.T., Thanh, N.V., Phu, N.H., Htut, Y., Han, K-T.T., Aye, K.H., Mokuolu, O.A., Olaosebikan, R.R., Folaranmi, O.O., Mayxay, M., Khanthavong, M., Hongvanthong, B., Newton, P.N., Onyamboko, M.A., Fanello, C.I., Tshefu, A.K., Mishra, N., Valecha, N., Phyo, A.P., Nosten, F., Yi, P., Tripura, R., Borrmann, S., Bashraheil, M., Peshu, J., Faiz, M.A., Ghose, A., Hossain, A., Samad, R., Rahman, R., Hasan, M.M., Islam, A., Miotto, O., Amato, R., MacInnis, B., Stalker, J., Kwiatkowski, D.P., Bozdech, Z., Jeeyapant, A., Cheah, P.Y., Sakulthaew, T., Chalk, J., Intharabut, B., Silamut, K., Lee, S.J., Vihokhern, B., Kunasol, C., Imwong, M., Tarning, J., Taylor, W.J., Yeung, S., Woodrow, C.J., Flegg, J.A., Das, D., Smith, J., Venkatesan, M., Plowe, C.V., Stepniewska, K., Guerin, P.J., Dondorp, A.M., Day, N.P., White, N.J., 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371, 411–423.

    Article  PubMed Central  Google Scholar 

  5. Aspenström-Fagerlund, B., Tallkvist, J., Ilbäck, N.G., Glynn, A.W., 2012. Oleic acid decreases BCRP mediated efflux of mitoxantrone in Caco-2 cell monolayers. Food Chem. Toxicol. 50, 3635–3645.

    Article  PubMed Central  Google Scholar 

  6. Dondorp, A.M., Nosten, F., Yi, P., Das, D., Phyo, A.P., Tarning, J., Lwin, K.M., Ariey, F., Hanpithakpong, W., Lee, S.J., Ringwald, P., Silamut, K., Imwong, M., Chotivanich, K., Lim, P., Herdman, T., An, S.S., Yeung, S., Singhasivanon, P., Day, N.P., Lindegardh, N., Socheat, D., White, N.J., 2009. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467.

    CAS  Article  PubMed Central  Google Scholar 

  7. Doyle, L., Ross, D.D., 2003. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22, 7340–7358.

    Article  PubMed Central  Google Scholar 

  8. Imwong, M., Suwannasin, K., Kunasol, C., Sutawong, K., Mayxay, M., Rekol, H., Smithuis, F.M., Hlaing, T.M., Tun, K.M., van der Pluijm, R.W., Tripura, R., Miotto, O., Menard, D., Dhorda, M., Day, N.P.J., White, N.J., Dondorp, A.M., 2017. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect. Dis. 17, 491–497.

    Article  PubMed Central  Google Scholar 

  9. Kage, K., Tsukahara, S., Sugiyama, T., Asada, S., Ishikawa, E., Tsuruo, T., Sugimoto, Y., 2002. Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int. J. Cancer. 97, 626–630.

    CAS  Article  PubMed Central  Google Scholar 

  10. Kage, K., Fujita, T., Sugimoto, Y., 2005. Role of Cys-603 in dimer/oligomer formation of the breast cancer resistance protein BCRP/ABCG2. Cancer Sci. 96, 866–877.

    CAS  Article  PubMed Central  Google Scholar 

  11. Kimura, O., Haraguchi, K., Ohta, C., Koga, N., Kato, Y., Endo, T., 2014. Uptake of aristolochic acid I into Caco-2 cells by monocarboxylic acid transporters. Biol. Pharm. Bull. 37, 1475–1479.

    CAS  Article  PubMed Central  Google Scholar 

  12. Lecerf-Schmidt, F., Peres, B., Valdameri, G., Gauthier, C., Winter, E., Payen, L., Di Pietro, A., Boumendjel, A., 2013. ABCG2: recent discovery of potent and highly selective inhibitors. Future Med. Chem. 5, 1037–1045.

    CAS  Article  PubMed Central  Google Scholar 

  13. Litman, T., Brangi, M., Hudson, E., Fetsch, P., Abati, A., Ross, D.D., Miyake, K., Resau, J.H., Bates, S.E., 2000. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J. Cell. Sci. 113, 2011–2021.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma, L.P., Qin, Y.H., Shen, Z.W., Bi, H.C., Hu, H.Y., Huang, M., Zhou, H., Yu, L.S., Jiang, H.D., Zeng, S., 2015. Aristolochic acid I is a substrate of BCRP but not P-glycoprotein or MRP2. J. Ethnopharmacol. 172, 430–435.

    CAS  Article  PubMed Central  Google Scholar 

  15. Mao, Q., Unadkat, J.D., 2015. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport–an update. AAPS J. 17, 65–82.

    CAS  Article  PubMed Central  Google Scholar 

  16. Noedl, H., Se, Y., Schaecher, K., Smith, B.L., Socheat, D., Fukuda, M.M., 2008. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 359, 2619–2620.

    CAS  Article  PubMed Central  Google Scholar 

  17. Noguchi, K., Katayama, K., Sugimoto, Y., 2014. Human ABC transporter ABCG2/BCRP expression in chemoresistance: basic and clinical perspectives for molecular cancer therapeutics. Pharmgenomics Pers. Med. 7, 53–64.

    PubMed  PubMed Central  Google Scholar 

  18. Rijpma, S.R., van den Heuvel, J.J., van der Velden, M., Sauerwein, R.W., Russel, F.G., Koenderink, J.B., 2014. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity. Malar. J. 13, 359–366.

    Article  PubMed Central  Google Scholar 

  19. Wei, S.J., Ji, H.Y., Yang, B., Ma, L.P., Bei, Z.C., Li, X., Dang, H.W., Yang, X.Y., Liu, C., Wu, X.L., Chen, J., 2015. Impact of chrysosplenetin on the pharmacokinetics and anti-malarial efficacy of artemisinin against Plasmodium berghei as well as in vitro CYP450 enzymatic activities in rat liver microsome. Malar. J. 14, 432–445.

    Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiuli Wu or Jing Chen.

Additional information

Author’s contributions

YZ and CZ contributed in running the laboratory work. JC and LM analyzed the data. BY and JW revised the manuscript critically. XW and JC designed the study, supervised the laboratory work and contributed to modify the manuscript. All the authors have read the final manuscript and approved its submission.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, C., Chen, J. et al. Chrysosplenetin, in the absence and presence of artemsininin, alters breast cancer resistance protein-mediated transport activity in Caco-2 cell monolayers using aristolochic acid I as a specific probe substrate. Rev. Bras. Farmacogn. 27, 780–784 (2017). https://doi.org/10.1016/j.bjp.2017.10.006

Download citation

Keywords

  • Chrysosplenetin
  • Artemisinin
  • Aristolochic acid I
  • Breast cancer resistance protein
  • Caco-2 cells monolayers