Phytochemical composition and chronic hypoglycemic effect of Rhizophora mangle cortex on STZ-NA-induced diabetic rats

Abstract

Type 2 diabetes is a major health problem in Mexico, as it is in other countries, is a chronic condition that develops when the body cannot produce enough insulin or cannot use it appropriately. Both insulin deficiency and insulin resistance lead to high blood glucose levels. In Mexico, people with diabetes are known to use the decoction of red mangrove (Rhizophora mangle L., Rhizophoraceae) bark to control blood glucose levels. Therefore, in this study, we sought to investigate the chronic hypoglycemic and hypolipidemic effects of R. mangle; we also elucidate some of the major phytochemical compounds of R. mangle. To analyze the hypoglycemic and hypolipidemic effects, we used rats with streptozotocin-nicotinamide-induced hyperglycemia; the rats were classified into four groups (six rats each), based on the treatment given, as follows: group 1, non-hyperglycemic control; group 2, hyperglycemic control; group 3, glibenclamide (5 mg/kg body weight); and group 4, Rhizophora ethanol-water extract (90 mg/kg). The extract or glibenclamide was orally administered, dissolved in 1.5 ml of physiological NaCl-solution, twice a day (in the morning and in the evening) over a period of 42 days. The methanolic extract was used to elucidate the main compounds present in R. mangle via conventional phytochemical methods, such as TLC, HLPC, UPLC-DAD-MS, and NMR. The following compounds were detected: cinchonains Ia and Ib, catechin- 3-O-rhamnopyranoside, epicatechin, lyoniside, and nudiposide. The daily administration of Rhizophora ethanol–water extract, similar to the traditional usage to control type 2 diabetes, was shown to exert chronic hypoglycemic and hypolipidemic effects. This effect may be associated whit the constituents in the extract. These findings suggest that R. mangle and its constituents could be potentially used to treat type 2 diabetes.

References

  1. ADA, 2015. Classification and diagnosis of diabetes. Diabetes Care 38, S8–S16.

    Google Scholar 

  2. Alarcon-Aguilara, F.J., Roman-Ramos, R., Perez-Gutierrez, S., Aguilar-Contreras, A., Contreras-Weber, C.C., Flores-Saenz, J.L., 1998. Study of the anti-hyperglycemic effect of plants used as antidiabetics. J. Ethnopharmacol. 61, 101–110.

    CAS  Article  PubMed Central  Google Scholar 

  3. Andrade-Cetto, A., Heinrich, M., 2005. Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J. Ethnopharmacol. 99, 325–348.

    Article  PubMed Central  Google Scholar 

  4. Andrade-Cetto, A., Mares, M., 2012. Hypoglycemic effect of the Rhizophora mangle cortex on STZ-NA-induced diabetic rats. Pharmacologyonline 3, 1–5.

    Article  Google Scholar 

  5. Bahadoran, Z., Mirmiran, P., Azizi, F., 2013. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J. Diabetes Metab. Disord. 12, 43.

    Article  PubMed Central  Google Scholar 

  6. Committee for the Update of the Guide for the Care, Use of Laboratory Animals, Institute for Laboratory Animal Research, Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Institute for Laboratory Animal Research, 2011. Guide for the Care and Use of Laboratory Animals, Division on Earth and Life Studies, National Research Council, 8th ed, doi:10.1163/1573-3912 islam DUM 3825.

    Google Scholar 

  7. Cremonini, E., Bettaieb, A., Haj, F.G., Fraga, C.G., Oteiza, P.I., 2016. (−)-Epicatechin improves insulin sensitivity in high fat diet-fed mice. Arch. Biochem. Biophys. 599, 13–21.

    CAS  Article  PubMed Central  Google Scholar 

  8. De Fronzo, R.A., Ferrannini, E., Groop, L., Henry, R.R., Herman, W.H., Holst, J.J., Weiss, R., 2015. Type 2 Diabetes Mellitus. Nat. Rev. Dis. Primers., https://doi.org/10.1038/nrdp.2015.19.

    Google Scholar 

  9. IDF, 2015. Diabetes Atlas, 7th ed. International Diabetes Federation, Brussels.

    Google Scholar 

  10. Ishimaru, K., Nonaka, G.I., Nishioka, I., 1987. Flavan-3-ol and procyanidine glycosides from Quercus miyagii. Phytochemistry 26, 1167–1170.

    CAS  Article  Google Scholar 

  11. Litterio, M.C., Vazquez Prieto, M.A., Adamo, A.M., Elesgaray, R., Oteiza, P.I., Galleano, M., Fraga, C.G., 2015. (−)-Epicatechin reduces blood pressure increase in highfructose-fed rats: Effects on the determinants of nitric oxide bioavailability. J. Nutr. Biochem. 26, 745–751.

    CAS  Article  PubMed Central  Google Scholar 

  12. Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., Hillarire-Buys, D., Novelli, M., Ribes, G., 1998. Development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47, 224–229.

    CAS  Article  PubMed Central  Google Scholar 

  13. Pennington, T.D., Sarukhán, J., 1998. Tropical Trees of Mexico, 1st ed. UNAM-FCE, México.

    Google Scholar 

  14. Pizzolatti, M.G., Venson, A.F., Smânia Júnior, A., Smânia, E.D.F.A., Braz-Filho, R., 2002. Two epimeric flavalignans from Trichilia catigua (Meliaceae) with antimicrobial activity. Zeitschrift fur Naturforsch. - Sect. C J. Biosci. 57, 483–488.

    CAS  Article  Google Scholar 

  15. Qa’dan, F., Verspohl, E.J., Nahrstedt, A., Petereit, F., Matalka, K.Z., 2009. Cinchonain Ib isolated from Eriobotrya japonica induces insulin secretion in vitro and in vivo. J. Ethnopharmacol. 124, 224–227.

    Article  PubMed Central  Google Scholar 

  16. Resende, F.O., Rodrigues-Filho, E., Luftmann, H., Petereit, F., Palazzo de Mello, J.C., 2011. Phenylpropanoid substituted flavan-3-ols from Trichilia catigua and their in vitro antioxidative activity. J. Braz. Chem. Soc. 22, 2087–2093.

    CAS  Article  Google Scholar 

  17. Sadhu, S.K., Khatun, A., Panadda, P., Ohtsuki, T., Ishibashi, M., 2007. Lignan glycosides and flavonoids from Saraca asoca with antioxidant activity. J. Nat. Med. 61, 480–482.

    CAS  Article  Google Scholar 

  18. Schroeter, H., Heiss, C., Balzer, J., Kleinbongard, P., Keen, C.L., Hollenberg, N.K., Sies, H., Kwik-Uribe, C., Schmitz, H.H., Kelm, M., 2006. (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. U. S. A. 103, 1024–1029.

    CAS  Article  PubMed Central  Google Scholar 

  19. Si, H., Fu, Z., Velayutham, P., Babu, A., Zhen, W., Leroith, T., Meaney, M.P., Voelker, K.a., Jia, Z., Grange, R.W., Liu, D., 2011. Dietary Epicatechin Promotes Survival of Obese Diabetic Mice and Drosophila melanogaster 1–3., https://doi.org/10.3945/jn.110.134270.health-promoting (online 0–5).

    Google Scholar 

  20. Sunil, C., Agastian, P., Kumarappan, C., Ignacimuthu, S., 2012. In vitro antioxidant, antidiabetic and antilipidemic activities of Symplocos cochinchinensis (Lour.) S. Moore bark. Food Chem. Toxicol. 50, 1547–1553, https://doi.org/10.1016/j.fct.2012.01.029.

    CAS  Article  PubMed Central  Google Scholar 

  21. Witters, L.A., 2001. The blooming of the French lilac. J. Clin. Invest. 108, 1105–1107.

    CAS  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adolfo Andrade-Cetto.

Additional information

Authors’ contributions

AA-C idealized the study, write the manuscript and get the financial support; GMT-V perform the pharmacological experiments; SME-R performs the phytochemical experiments; LQ reviewed the phytochemical experimental data.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andrade-Cetto, A., Escandón-Rivera, S.M., Torres-Valle, G.M. et al. Phytochemical composition and chronic hypoglycemic effect of Rhizophora mangle cortex on STZ-NA-induced diabetic rats. Rev. Bras. Farmacogn. 27, 744–750 (2017). https://doi.org/10.1016/j.bjp.2017.09.007

Download citation

Keywords

  • Type 2 diabetes
  • Red mangrove
  • Hypoglycemic
  • Hypolipidemic