Aqueous extract of Baccharis trimera improves redox status and decreases the severity of alcoholic hepatotoxicity

Abstract

The metabolism of ethanol occurs mainly in the liver, promoting increase of reactive oxygen species and nitrogen, leading to redox imbalance. Therefore, antioxidants can be seen as an alternative to reestablish the oxidizing/reducing equilibrium. The aim of this study was to evaluate the antioxidant and hepatoprotective effect of aqueous extract of Baccharis trimera (Less.) DC., Asteraceae, in a model of hepatotoxicity induced by ethanol. The extract was characterized and in vitro tests were conducted in HepG2 cells. It was evaluated the cells viability exposed to aqueous extract for 24 h, ability to scavenging the radical DPPH, besides the production of reactive oxygen species and nitric oxide, and the influence on the transcriptional activity of transcription factor Nrf2 (12 and 24 h) after exposure to 200 mM ethanol. The results showed that aqueous extract was non-cytotoxic in any concentration tested; moreover, it was observed a decrease in ROS and NO production, also promoting the transcriptional activity of Nrf2. In vivo, we pretreatment male rats Fisher with 600 mg/kg of aqueous extract and 1 h later 5 ml/kg of absolute ethanol was administrated. After two days of treatment, the animals were euthanized and lipid profile, hepatic and renal functions, antioxidant status and oxidative damage were evaluated. The treatment with extract improved liver function and lipid profile, reflecting the reduction of lipid microvesicules in the liver. It also promoted an increase of glutathione peroxidase activity, decrease of oxidative damage and MMP-2 activity. These results, analyzed together, suggest the hepatoprotective effect of B. trimera aqueous extract.

References

  1. Abad, M.J., Bermejo, P., 2007. Baccharis (Compositae): a review update. Arkivoc 7, 76–96.

    Google Scholar 

  2. Aebi, H., 1984. Catalase in vitro. Method Enzymol. 105, 121–126.

    CAS  Google Scholar 

  3. Alikunju, S., Abdul Muneer, P.M., Zhang, Y., Szlachetka, A.M., Haorah, J., 2011. The inflammatory footprints of alcohol-induced oxidative damage in neurovascular components. Brain Behav. Immun. 25, 129–136.

    Google Scholar 

  4. Al-Sayed, E., Martiskainen, O., Seif el-Din, S.H., Sabra, A.N., Hammam, O.A., El-Lakkany, N.M., Abdel-Daim, M.M., 2014. Hepatoprotective and antioxidant effect of Bauhinia hookeri extract against carbon tetrachloride-induced hepatotoxicity in mice and characterization of its bioactive compounds by HPLC-PDA-ESIMS/MS. Biomed. Res. Int., https://doi.org/10.1155/2014/245171.

    Google Scholar 

  5. Al-Sayed, E., Abdel-Daim, M.M., Kilany, O.E., Karonen, M., Sinkkonen, J., 2015. Protective role of polyphenols from Bauhinia hookeri against carbon tetrachloride-induced hepato- and nephrotoxicity in mice. Ren. Fail. 37, 1198–1207.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Al-Sayed, E., Abdel-Daim, M.M., 2014. Protective role of cupressuflavone from Cupressus macrocarpa against carbon tetrachloride-induced hepato- and nephrotoxicity in mice. Planta Med. 80, 1665–1671.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Araújo, C.M., Lúcio, K.P., Eustáquio Silva, M., Isoldi, M.C., Bianco de Souza, G.H., Brandão, G.C., Schulze, R., Costa, D.C., 2015. Morus nigra leaf extract improves glycemic response and redox profile in the liver of diabetic rats. Food Funct. 6, 3490–3499.

    PubMed  PubMed Central  Google Scholar 

  8. Azab, S.S., Abdel-Daim, M., Eldahshan, O.A., 2013. Phytochemical, cytotoxic, hepatoprotective and antioxidant properties of Delonix regia leaves extract. Med. Chem. Res. 22, 4269–4277.

    CAS  Google Scholar 

  9. Bandeira, A.C.B., Silva, R.C., Rossoni Júnior, J.V., Figueiredo, V.P., Talvani, A., Cangussú, S.D., Bezerra, F.S., Costa, D.C., 2017. Lycopene pretreatment improves hepatotoxicity induced by acetaminophen in C57BL/6 mice. Bioorg. Med. Chem. Lett. 25, 1057–1065.

    CAS  Google Scholar 

  10. Baraona, E., Lieber, C.S., 1979. Effects of ethanol on lipid metabolism. J. Lipid Res. 20, 289–315.

    CAS  PubMed  Google Scholar 

  11. Benedek, B., Kopp, B., Melzig, M.F., 2007. Achillea millefolium s.l. is the antiinflammatory activity mediated by protease inhibition? J. Ethnopharmacol. 113, 312–317.

    PubMed  PubMed Central  Google Scholar 

  12. Bianchi, M.L.P., Antunes, L.M.G., 1999. Radicais livres e os principais antioxidantes da dieta. Rev. Nutr. 12, 123–130.

    CAS  Google Scholar 

  13. Buege, J.Á., Aust, S.D., 1978. Microsomal lipid peroxidation. Method Enzymol. 52, 302–310.

    CAS  Google Scholar 

  14. Bona, C.M., Biasi, L.A., Zanette, F., Nakashima, T., 2005. Estaquia de três espécies de Baccharis. Cienc. Rural. 35, 223–226.

    Google Scholar 

  15. Brunt, E.M., Janney, C.G., Di Bisceglie, A.M., Neuschwander-Tetri, B.A., Bacon, B.R., 1999. Nonalcoholic steatohepatitis: a proposal for grading and staging histological lesions. Am. J. Gastroenterol. 94, 2467–2474.

    CAS  Google Scholar 

  16. Cederbaum, A.I., 2012. Alcohol metabolism. Clin. Liver Dis. 16, 667–685.

    PubMed  PubMed Central  Google Scholar 

  17. Ceni, E., Mello, T., Galli, A., 2014. Pathogenesis of alcoholic liver disease: role of oxidative metabolism. World J. Gastroenterol. 20, 17756–17772.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, B., Lu, Y., Chen, Y., Cheng, J., 2015. The role of Nrf2 in oxidative stress-induced endothelial injuries. J. Endocrinol. 225, 83–99.

    Google Scholar 

  19. Contreras-Zentella, M.L., Hernández-Mu˜noz, R., 2016. Is liver enzyme release really associated with cell necrosis induced by oxidant stress? Oxid. Med. Cell Longev., https://doi.org/10.1155/2016/3529149.

    Google Scholar 

  20. de Araújo, G.R., Rabelo, A.C.S., Meira, J.S., Rossoni-Júnior, J.V., de Castro-Borges, W., Guerra-Sá, R., Batista, M.A., Silveira-Lemos, D., Souza, G.H.B., Brandão, G.C., Chaves, M.M., Costa, D.C., 2016. Baccharis trimera inhibits reactive oxygen species production through PKC and down-regulation p47phox phosphorylation of NADPH oxidase in SK Hep-1 cells. Exp. Biol. Med., https://doi.org/10.1177/1535370216672749.

    Google Scholar 

  21. Ding, R.B., Tian, K., Huang, L.L., He, C.W., Jiang, Y., Wang, Y.T., Wan, J.B., 2012. Herbal medicines for the prevention of alcoholic liver disease: a review. J. Ethnopharmacol. 144, 457–465.

    PubMed  PubMed Central  Google Scholar 

  22. Dong, J., Yan, D., Chen, S., 2011. Stabilization of Nrf2 protein by D3T provides protection against ethanol-induced apoptosis in PC12 cells. PLoS ONE 6, e16845, https://doi.org/10.1371/journal.pone.0016845.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. El-Naga, R., 2015. Apocynin protects against ethanol-induced gastric ulcer in rats by attenuating the upregulation of NADPH oxidases 1 and 4. Chem. Biol. Interact. 242, 317–326.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Foglio, M.A., Queiroga, C.L., Sousa, I.M.O., Rodrigues, R.A.F., 2006. Plantas Medicinais como Fonte de Recursos Terapêuticos: Um Modelo Multidisciplinar. Multiciência, Available at: http://www.multiciencia.unicamp.br [assessed 30.09.17].

    Google Scholar 

  25. Fahmy, N.M., Al-Sayed, E., Abdel-Daim, M.M., Singab, A.N., 2017. Anti-inflammatory and analgesic activities of Terminalia muelleri Benth. (Combretaceae). Drug Dev. Res. 78, 146–154.

    CAS  Google Scholar 

  26. Fotakis, G., Timbrell, J.A., 2005. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 160, 171–177.

    PubMed  PubMed Central  Google Scholar 

  27. Gong, P., Cederbaum, A.I., 2006. Nrf2 is increased by CYP2E1 in rodent liver and HepG2 cells and protects against oxidative stress caused by CYP2E1. J. Hepatol. 43, 144–153.

    CAS  Google Scholar 

  28. González, J.A.M., Madrigal-Santillán, E., Morales-González, A., Bautista, M., Gayosso-Islas, E., Sánchez-Moreno, C., 2015. What is known regarding the participation of factor Nrf-2 in liver regeneration? Cell 4, 169–177.

    Google Scholar 

  29. Han, K.H., Hashimoto, N., Fukushima, M., 2016. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes. World J. Gastroenterol. 7, 37–49.

    Google Scholar 

  30. Haorah, J., Ramirez, S.H., Floreani, N., Gorantla, S., Morsey, B., Persidsky, Y., 2008. Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic. Biol. Med. 45, 1542–1550.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Haorah, J., Floreani, N.A., Knipe, B., Persidsky, Y., 2011. Stabilization of superoxide dismutase by acetyl-l-carnitine in human brain endothelium during alcohol exposure: novel protective approach. Free Radic. Biol. Med. 51, 1601–1609.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hernández, J.A., López-Sánchez, R.C., Rendón-Ramírez, A., 2015. Lipids and oxidative stress associated with ethanol-induced neurological damage. Oxid. Med. Cell Longev., https://doi.org/10.1155/2016/1543809.

    Google Scholar 

  33. Hopps, E., Lo Presti, R., Montana, M., Canino, B., Calandrino, V., Caimi, G., 2015. Analysis of the correlations between oxidative stress, gelatinases and their tissue inhibitors in the human subjects with obstructive sleep apnea syndrome. J. Physiol. Pharmacol. 66, 803–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M.C., Rahu, N.O., 2016. Oxidative stress and inflammation: what polyphenols can do for us? Oxid. Med. Cell Longev., https://doi.org/10.1155/2016/7432797.

    Google Scholar 

  35. Karam, T.K., Dalposso, L.M., Casa, D.M., de Freitas, G.B.L., 2013. Carqueja (Baccharis trimera): utilização terapêutica e biossíntese. Rev. Bras. Plantas Med. 15, 280–286.

    CAS  Google Scholar 

  36. Kim, J., Keum, Y.S., 2016. NRF2, a key regulator of antioxidants with two faces towards cancer. Oxid. Med. Cell Longev., https://doi.org/10.1155/2016/2746457.

    Google Scholar 

  37. Kumar, S.K.J., Liao, J.W., Xiao, J.H., Gokila-Vani, M., Wang, S.Y., 2012. Hepatoprotective effect of lucidone against alcohol-induced oxidative stress in human hepatic HepG2 cells through the up-regulation of HO-1/Nrf-2 antioxidant genes. Toxicol. In Vitro 26, 700–708.

    Google Scholar 

  38. Lasek, A.W., 2016. Effects of ethanol on brain extracellular matrix: implications for alcohol use disorder. Alcohol Clin. Exp. Res. 40, 2030–2042.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Levine, R.L., Williams, L.A., Stadtman, E.R., Shacter, E., 1994. Carbonyl assays for determination of oxidatively modified proteins. Method Enzymol. 233, 346–357.

    CAS  Google Scholar 

  40. Li, M., Lu, Y., Hu, Y., Zhai, X., Xu, W., Jing, H., Tian, X., Lin, Y., Gao, D., Yao, J., 2014. Salvianolic acid B protects against acute ethanol-induced liver injury through SIRT1-mediated deacetylation of p53 in rats. Toxicol. Lett. 228, 67–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lívero, F.A., Acco, A., 2016. Molecular basis of alcoholic fatty liver disease: from incidence to treatment. Hepatol. Res. 46, 111–123.

    PubMed  PubMed Central  Google Scholar 

  42. Lívero, F.A., Martins, G.G., Queiroz Telles, J.E., Beltrame, O.C., Petris Biscaia, S.M., Cavicchiolo Franco, C.R., Oude Elferink, R.P., Acco, A., 2016a. Hydroethanolic extract of Baccharis trimera ameliorates alcoholic fatty liver disease in mice. Chem. Biol. Interact. 260, 22–32.

    PubMed  PubMed Central  Google Scholar 

  43. Lívero, F.A.R., da Silva, L.M., Ferreira, D.M., Galuppo, L.F., Borato, D.G., Prando, T.B., Lourenço, E.L., Strapasson, R.L., Stefanello, M.É., Werner, M.F., Acco, A., 2016b. Hydroethanolic extract of Baccharis trimera promotes gastroprotection and healing of acute and chronic gastric ulcers induced by ethanol and acetic acid. Naunyn-Schmiedeberg’s Arch. Pharmacol. 389, 985–998.

    Google Scholar 

  44. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  45. Lu, Y., Zhang, X.H., Cederbaum, A.I., 2012. Ethanol induction of CYP2A5: role of CYP2E1-ROS-Nrf2 pathway. Toxicol. Sci. 128, 427–438.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lushchak, V.I., 2014. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 224, 164–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Marklund, S., Marklund, G., 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nogueira, N.P., Reis, P.A., Laranja, G.A., Pinto, A.C., Aiub, C.A., Felzenszwalb, I., Paes, M.C., Bastos, F.F., Bastos, V.L., Sabino, K.C., Coelho, M.G., 2011. In vitro and in vivo toxicological evaluation of extract and fractions from Baccharis trimera with antiinflammatory activity. J. Ethnopharmacol. 138, 513–522.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Oliveira, A.C.P., Endringer, D.C., Amorim, L.A.S., Brandão, M.G.L., Coelho, M.M., 2011. Effect of the extracts and fractions of Baccharis trimera and Syzygium cumini on glycaemia of diabetic and non-diabetic mice. J. Ethnopharmacol. 102, 465–469.

    Google Scholar 

  50. de Oliveira, C.B., Comunello, L.N., Lunardelli, A., Amaral, R.H., Pires, M.G., da Silva, G.L., Manfredini, V., Vargas, C.R., Gnoatto, S.C., de Oliveira, J.R., Gosmann, G., 2012. Phenolic enriched extract of Baccharis trimera presents anti-inflammatory and antioxidant activities. Mol. Cells 17, 1113–1123.

    Google Scholar 

  51. Pádua, B.C., Silva, L.D., Rossoni Júnior, J.V., Humberto, J.L., Chaves, M.M., Silva, M.E., Pedrosa, M.L., Costa, D.C., 2010. Antioxidant properties of Baccharis trimera in the neutrophils of Fisher rats. J. Ethnopharmacol. 129, 381–386.

    Google Scholar 

  52. Pádua, B.P., Rossoni Junior, J.V., de Brito Magalhaes, C.L., Seiberf, J.B., Araujo, C.M., Bianco de Souza, G.H., Chaves, M.M., Silva, M.E., Pedrosa, M.L., Costa, D.C., 2013. Baccharis trimera improves the antioxidant defense system and inhibits iNOS and NADPH oxidase expression in a rat model of inflammation. Curr. Pharm. Biotechnol. 14, 975–984.

    Google Scholar 

  53. Pádua, B.C., Rossoni Júnior, J.V., Magalhães, C.L.B., Chaves, M.M., Silva, M.E., Pedrosa, M.L., Bianco de Souza, G.H., Brandão, G.C., Rodrigues, I.V., Lima, W.G., Costa, D.C., 2014. Protective effect of Baccharis trimera extract on acute hepatic injury in a model of inflammation induced by acetaminophen. Mediators Inflamm., https://doi.org/10.1155/2014/196598.

    Google Scholar 

  54. Paiva, F.A., Bonomo, L.F., Boasquivis, P.F., Paula, I.T.B.R., Guerra, J., Leal, W.M., Silva, M.E., Pedrosa, M.L., Oliveira, R.P., 2015. Carqueja (Baccharis trimera) protects against oxidative stress and α amyloid-induced toxicity in Caenorhabditis elegans. Oxid. Med. Cell Longev., https://doi.org/10.1155/2015/740162.

    Google Scholar 

  55. Park, H.Y., Choi, H.D., Eom, H., Choi, I., 2013. Enzymatic modification enhances the protective activity of citrus flavonoids against alcohol-induced liver disease. Food Chem. 139, 231–240.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rates, S.M.K., 2001. Plants as source of drugs. Toxicon 39, 603–613.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rodrigues, C.R.F., Dias, J.H., Semedo, J.G., da Silva, J., Ferraz, A.B.F., Picada, J.N., 2009. Mutagenic and genotoxic effects of Baccharis dracunculifolia (D.C.). J. Ethnopharmacol. 124, 321–324.

    PubMed  PubMed Central  Google Scholar 

  58. Rump, T.J., Abdul Muneer, P.M., Szlachetka, A.M., Lamb, A., Haorei, C., Alikunju, S., Xiong, H., Keblesh, J., Liu, J., Zimmerman, M.C., Jones, J., Donohue Jr., T.M., Persidsky, Y., Haorah, J., 2010. Acetyl-L-carnitine protects neuronal function from alcoholinduced oxidative damage in the brain. Free Radic. Biol. Med. 49, 1494–1504.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Silva, B.M., Sousa, L.P., Ruiz, A.C.G., Leite, F.G.G., Teixeira, M.M., Fonseca, F.G., Pimenta, P.F.P., Ferreira, P.C.P., Kroon, E.G., Bonjardim, C.A., 2011. The dengue virus nonstructural protein 1 (NS1) increases NF-jB transcriptional activity in HepG2 cells. Arch. Virol. 156, 1275–1279.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Smith, C., Smith, C., Lieberman, M., Marks, A.D., 2007. Bioquímica Médica Básica de Marks, 2nd ed., pp. 458–471.

    Google Scholar 

  61. Steiner, J.L., Crowell, K.T., Lang, C.H., 2015. Impact of alcohol on glycemic control and insulin action. Biomol. Ther. 5, 2223–2246.

    CAS  Google Scholar 

  62. Verdi, L.G., Brighente, I.M.C., Pizzolatti, M.G., 2005. Gênero Baccharis (Asteraceae): aspectos químicos, econômicos e biológicos. Quim. Nova 28, 85–94.

    CAS  Google Scholar 

  63. Lu, Y., Cederbaum, A.I., 2008. CYP2E1 and oxidative liver injury by alcohol. Free Radic. Biol. Med. 44, 723–738.

    CAS  Google Scholar 

  64. Yan, S.L., Yang, H.T., Lee, H.L., Yin, M.C., 2014. Protective effects of maslinic acid against alcohol-induced acute liver injury in mice. Food Chem. Toxicol. 74, 149–155.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniela C. Costa.

Additional information

Author contributions

ACSR elaborated and performed all the work. GRA, GHBS GCB contributed in collecting plant sample and identification, confection of herbarium, chromatographic analysis. KPL and PHAM assisted in the practical laboratory part. CMA contributed with the zymography technique. BMS, ACAC and EMCR contributed with luciferase assay. WGL contributed with histological analyses. DCC designed the study, supervised the laboratory work and contributed to critical reading of the manuscript. All the authors have read the final manuscript and approved the submission.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rabelo, A.C.S., de Araújo, G.R., de Lúcio, K.P. et al. Aqueous extract of Baccharis trimera improves redox status and decreases the severity of alcoholic hepatotoxicity. Rev. Bras. Farmacogn. 27, 729–738 (2017). https://doi.org/10.1016/j.bjp.2017.09.003

Download citation

Keywords

  • Ethanol
  • Redox imbalance
  • Baccharis trimera
  • Aqueous extract
  • Hepatotoxicity