Biological activities and phytochemical profile of Passiflora mucronata from the Brazilian restinga

Abstract

In general, Passiflora species have been reported for their folk medicinal use as sedative and antiinflammatory. However, P. caerulea has already been reported to treat pulmonary diseases. Severe pulmonary tuberculosis, generally caused by Mycobacterium tuberculosis strains resistant to multiple drugs, can lead to deleterious inflammation and high mortality, encouraging new approaches in drug discovery. Thus, the aim of this work was to evaluate the Passiflora mucronata Lam., Passifloraceae, potential for tuberculosis treatment. Specifically, related to antimycobacterial activity and anti-inflammatory related effects (based on inhibition of nitric oxide, tumor necrosis factor-alpha production and antioxidant potential), as well as the chemical profile of P. mucronata. High performance liquid chromatography coupled with diode-array ultraviolet and mass spectrometer analyses of crude hydroalcoholic extract and ethyl acetate fraction showed the presence of flavonoids. Ethyl acetate fraction showed to be as antioxidant as Ginkgo biloba standard extract with EC50 of 14.61 ± 1.25 μg/ml. One major flavonoid isolated from ethyl acetate fraction was characterized as isoorientin. The hexane fraction and its main isolated compound, the triterpene β-amyrin, exhibited significant growth inhibitory activity against Mycobacterium bovis BCG (MIC50 1.61 ± 1.43 and 3.93 ± 1.05 μg/ml, respectively). In addition, Passiflora mucronata samples, specially hexane and dichloromethane fractions, as well as pure β-amyrin, showed a doserelated inhibition of lipopolysaccharide (LPS)-induced nitric oxide production. In conclusion, Passiflora mucronata presented relevant biological potential and should be considered for further studies using in vivo pulmonary tuberculosis model.

References

  1. Abourashed, E.A., Vanderplank, J.R., Khan, I.A., 2002. High-speed extraction and HPLC fingerprinting of medicinal plants–I. Application to Passiflora flavonoids. Pharm. Biol. 40, 81–91.

    CAS  Google Scholar 

  2. Aguilera, G., Colín-González, A.L., Rangel-López, E., Chavarría, A., Santamaría, A., 2017. Redox signaling, neuroinflammation, and neurodegeneration. Antioxid. Redox Signal.

    Google Scholar 

  3. Almeida, F.M., Ventura, T.L.B., Amaral, E.P., Ribeiro, S.C.M., Calixto, S.D., Manhães, M.R., Rezende, A.L., Souza, G.S., Carvalho, I.S.de, Silva, E.C., Silva, J.A.da, Carvalho, E.A.C.Q., Kritski, A.L., Lasunskaia, E.B., 2017. Hypervirulent Mycobacterium tuberculosis strain triggers necrotic lung pathology associated with enhanced recruitment of neutrophils in resistant C57BL/6 mice. PLOS ONE 12, e0173715.

    PubMed  PubMed Central  Google Scholar 

  4. Anesini, C., Perez, C., 1993. Screening of plants used in Argentine folk medicine for antimicrobial activity. J. Ethnopharmacol. 39, 119–128.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bendini, A., Cerretani, L., Pizzolante, L., Toschi, T.G., Guzzo, F., Ceoldo, S., Marconi, A.M., Andreetta, F., Levi, M., 2006. Phenol content related to antioxidant and antimicrobial activities of Passiflora spp. extracts. Eur. Food Res. Technol. 223, 102–109.

    CAS  Google Scholar 

  6. Bolosco, O.H., Valle, L.de S., 2008. Plantas de uso medicinal em Quissamã, Rio de Janeiro, Brasil. Iheringia Sér. Bot. 63, 263–277.

    Google Scholar 

  7. Borrelli, F., Pinto, L., Izzo, A.A., Mascolo, N., Capasso, F., Mercati, V., Toja, E., Autore, G., 1996. Anti-inflammatory activity of Passiflora incarnata L. in rats. Phytother. Res. 10, 104S–106S.

    Google Scholar 

  8. Carvalho, M.G., Velandia, J.R., de Oliveira, L.F., Bezerra, F.B., 1998. Triterpenes isolated from Eschweilera longipes miers (Lecythidaceae). Quím. Nova 21, 740–743.

    Google Scholar 

  9. Copp, B.R., Pearce, A.N., 2007. Natural product growth inhibitors of Mycobacterium tuberculosis. Nat. Prod. Rep. 24, 278–297.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Costa, G.M., Ortmann, C.F., Schenkel, E.P., Reginatto, F.H., 2011. An HPLC-DAD method to quantification of main phenolic compounds from leaves of Cecropia species. J. Braz. Chem. Soc. 22, 1096–1102.

    CAS  Google Scholar 

  11. Critchley, J.A., Young, F., Orton, L., Garner, P., 2013. Corticosteroids for prevention of mortality in people with tuberculosis: a systematic review and meta-analysis. Lancet Infect. Dis. 13, 223–237.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dhawan, K., Dhawan, S., Sharma, A., 2004. Passiflora: a review update. J. Ethnopharmacol. 94, 1–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dheda, K., Gumbo, T., Maartens, G., Dooley, K.E., McNerney, R., Murray, M., Furin, J., Nardell, E.A., London, L., Lessem, E., Theron, G., van Helden, P., Niemann, S., Merker, M., Dowdy, D., Van Rie, A., Siu, G.K., Pasipanodya, J.G., Rodrigues, C., Clark, T.G., Sirgel, F.A., Esmail, A., Lin, H.H., Atre, S.R., Schaaf, H.S., Chang, K.C., Lange, C., Nahid, P., Udwadia, Z.F., Horsburgh Jr., C.R., Churchyard, G.J., Menzies, D., Hesseling, A.C., Nuermberger, E., McIlleron, H., Fennelly, K.P., Goemaere, E., Jaramillo, E., Low, M., Jara, C.M., Padayatchi, N., Warren, R.M., 2017. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med. 5, 291–360.

    Google Scholar 

  14. Garbin, M.L., Corrijo, T.T., Sansevero, J.B.B., Sánchez-Tapia, A., Scarano, F.R., 2012. Subordinate, not dominant, woody species promote the diversity of climbing plants. Perspect. Plant Ecol. Evol. Syst. 14, 257–265.

    Google Scholar 

  15. Garlanda, C., Di Liberto, D., Vecchi, A., La Manna, M.P., Buracchi, C., Caccamo, N., Salerno, A., Dieli, F., Mantovani, A., 2007. Damping excessive inflammation and tissue damage in Mycobacterium tuberculosis infection by Toll IL-1 receptor 8/single Ig IL-1-related receptor, a negative regulator of IL-1/TLR signaling. J. Immunol. 179, 3119–3125.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gomez-Flores, R., Gupta, S., Tamez-Guerra, R., Mehta, R.T., 1995. Determination of MICs for Mycobacterium avium-M. intracellulare complex in liquid medium by a colorimetric method. J. Clin. Microbiol. 33, 1842–1846.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gonçalves, A.S.M., Peixes, R.G., Sato, A., Muzitano, M.F., Souza, R.O.M.A., Machado, T.B., Amaral, A.C.F., Moura, M.R.L., Simas, N.K., Leal, I.C.R., 2015. Pilosocereus arrabidae (Byles and Rowley) of the Grumari sandbank, RJ, Brazil: physical, chemical characterizations and antioxidant activities correlated to detection of flavonoids. Food Res. Int. 70, 110–117.

    Google Scholar 

  18. Griess, J.P., 1879. Bemerkungen zu der Abhandlung der HH: Wesely und Benedikt ‘Uber einige Azoverbindungen’. Ber. Dtsch. Chem. Ges. 12, 426–428.

    Google Scholar 

  19. Higuchi, C.T., Sannomiya, M., Pavan, F.R., Leite, S.R., Sato, D.N., Franzblau, S.G., Sacramento, L.V., Vilegas, W., Leite, C.Q., 2011. Byrsonima fagifolia Niedenzu apolar compounds with antitubercular activity. Evid. Based Complement. Altern. Med., 1–5.

    Google Scholar 

  20. Imbassahy, C.A.A., Costa, D.P., Araujo, D.S.D., 2009. Briófitas do Parque Nacional da Restinga de Jurubatiba, RJ, Brasil. Acta Bot. Bras. 23, 558–570.

    Google Scholar 

  21. Jiang, G.B., Xu, L., Cao, F.L., Li, G.Z., Lei, M., 2017. Electron paramagnetic resonance (EPR) studies on free radical scavenging capacity of EGB and EGB cigarette. Spectrosc. Spect. Anal. 37, 1322–1328.

    CAS  Google Scholar 

  22. Luyen, B.T.T., Tai, B.H., Thao, N.P., Cha, J.Y., Lee, Y.M., Kim, Y.H., 2014. A new phenolic component from Triticum aestivum sprouts and its effects on LPS-stimulated production of nitric oxide and TNF-β in RAW 264.7 cells. Phytother. Res. 28, 1064–1070.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Machado, F.L.S., Ventura, T.L.B., Gestinari, L.M., Cassano, V., Resende, J.A., Kaiser, C.R., Lasunskaia, E.B., Muzitano, M.F., Soares, A.R., 2014. Sesquiterpenes from the Brazilian red alga Laurencia dendroidea. J. Agardh. Mol. 19, 3181–3192.

    Google Scholar 

  24. Mahairas, G.G., Sabo, P.J., Hickey, M.J., Singh, D.C., Stover, C.K.J., 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178, 1274–1282.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Martins, A., Vasas, A., Viveiros, M., Molnár, J., Hohmann, J., Amaral, L., 2011. Antibacterial properties of compounds isolated from Carpobrotus edulis. Int. J. Antimicrob. Agents 37, 438–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Melo, G.O.de, Muzitano, M.F., Legora-Machado, A., Almeida, T.A., Oliveira, D.B.de, Kaiser, C.R., Koatz, V.L., Costa, S.S., 2005. C-glycosylflavones from the aerial parts of Eleusine indica inhibit LPS-induced mouse lung inflammation. Planta Med. 71, 362–363.

    PubMed  PubMed Central  Google Scholar 

  27. Mensor, L.L., Menezes, F.S., Leitão, G.G., Reis, A.S., dos Santos, T.C., Coube, C.S., Leitão, S.G., 2001. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free. Radic. Method. Phytother. Res. 15, 127–130.

    CAS  Google Scholar 

  28. Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and citotoxicity assays. J. Immunol. Methods 65, 55–63.

    CAS  Google Scholar 

  29. Muzitano, M.F., Bergonzi, M.C., De Melo, G.O., Lage, C.L., Bilia, A.R., Vincieri, F.F., Rossi-Bergmann, B., Costa, S.S., 2011. Influence of cultivation conditions, season of collection and extraction method on the content of antileishmanial flavonoids from Kalanchoe pinnata. J. Ethnopharmacol. 133, 132–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Muzitano, M.F., Cruz, E.A., De Almeida, A.P., Da Silva, S.A.G., Kaiser, C.R., Guette, C., Rossi-Bergmann, B., Costa, S.S., 2006. Quercitrin: an antileishmanial flavonoid glycoside from Kalanchoe pinnata. Planta Med. 72, 81–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Okunade, A.L., Lewis, M.P.F.E., Lewis, W.H., 2004. Natural antimycobacterial metabolites: current status. Phytochemistry 65, 1017–1032.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Oz, H.S., 2017. Chronic inflammatory diseases and green tea polyphenols. Nutrients 9, E561.

    PubMed  PubMed Central  Google Scholar 

  33. Pereira, C.A.M., Yariwake, J.H., McCullagh, M., 2005. Distinction of the Cglycosylflavone isomer pairs orientin/isoorientin and vitexin/isovitexin using HPLC-MS exact mass measurement and in-source CID. Phytochem. Anal. 16, 295–301.

    CAS  Google Scholar 

  34. Sakalem, M.E., Negri, G., Tabach, R., 2012. Chemical composition of hydroethanolic extracts from five species of the Passiflora genus. Braz. J. Pharmacogn. 22, 1219–1232.

    CAS  Google Scholar 

  35. Salomon, C.E., Schmidt, L.E., 2012. Natural products as leads for tuberculosis drug development. Curr. Top. Med. Chem. 12, 735–765.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Scarano, F.R., 2002. Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rainforest. Ann. Bot. 90, 517–524.

    PubMed  PubMed Central  Google Scholar 

  37. Shih, M.F., Cheng, Y.D., Shen, C.R., Cherng, J.Y., 2010. A molecular pharmacology study into the anti-inflammatory actions of Euphorbia hirta L. on the LPS-induced RAW 264.7 cells through selective iNOS protein inhibition. J. Nat. Med. 64, 330–335.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sientzoff, P., Hubert, J., Janin, C., Voutquenne-Nazabadioko, L., Renault, J.H., Nuzillard, J.M., Harakat, D., Magid, A.A., 2015. Fast identification of radical scavengers from Securigera varia by combining 13C-NMR-based dereplication to bioactivityguided fractionation. Molecules 20, 14970–14984.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Silva, J.K., Cazarin, C.B.B., Colomeu, T.C., Batista, A.G., Meletti, L.M.M., Paschoal, J.A.R., Júnior, S.B., Furlan, M.F., Reyes, F.G., Augusto, F., Júnior, M.R.M., Zollner, R.L., 2013. Antioxidant activity of aqueous extract of passion fruit (Passiflora edulis) leaves: in vitro and in vivo study. Food Res. Int. 53, 882–890.

    Google Scholar 

  40. Sunitha, M., Devaki, K., 2009. Antioxidant activity of Passiflora edulis sims leaves. Indian J. Pharm. Sci. 71, 310–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Varassin, I.G., Trigo, J.R., Sazima, M., 2001. The role of nectar production, flower pigments and odour in the pollination of four species of Passiflora (Passifloraceae) in south-eastern Brazil. Bot. J. Linn. Soc. 136, 139–152.

    Google Scholar 

  42. Ventura, T.L.B., Calixto, S.D., Abrahim-Vieira, B.A., De Souza, A.M., Mello, M.V., Rodrigues, C.R., Miranda, L.S.M., De Souza, R.O.A., Leal, I.C.R., Lasunskaia, E.B., Muzitano, M.F., 2015a. Antimycobacterial and anti-inflammatory activities of substituted chalcones focusing on an anti-tuberculosis dual treatment approach. Molecules 20, 8072–8093.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ventura, T.L.B., Machado, F.L.S., Araujo, M.H., Gestinari, L.M.S., Kaiser, C.R., Esteves, F.A., Lasunskaia, E.B., Soares, A.R., Muzitano, M.F., 2015b. Nitric oxide production inhibition and anti-mycobacterial activity of extracts and halogenated sesquiterpenes from the Brazilian red alga Laurencia dendroidea. J. Agardh. Pharmacogn. Mag. 11, S611–S618.

    Google Scholar 

  44. Ventura, T.L.B., Silva, D.R.C., Lasunskaia, E.B., Maria, E.J., Muzitano, M.F., Oliveira, R.R., 2015c. Coumarine analogues with antimycobacterial and immunomodulatory activity. Curr. Bioact. Compd. 11, 109–115.

    CAS  Google Scholar 

  45. Wen, P., Han, H., Wang, R., Wang, N., Yao, X., 2007. C-glycosylfavones and aromatic glycosides from Campylotropis hirtella (Franch.) Schindl. Asian J. Trad. Medic. 2, 149–153.

    CAS  Google Scholar 

  46. Wohlmuth, H., Penman, K.G., Pearson, T., Lehmann, R.P., 2010. Pharmacognosy and chemotypes of passionflower (Passiflora incarnata L.). Biol. Pharm. Bull. 33, 1015–1018.

    CAS  Google Scholar 

  47. WHO, 2016. Global Tuberculosis Report. 1-201. World Health Organization.

    Google Scholar 

  48. Zeraik, M.L., Pereira, C.A.M., Zuin, V.G., Yariwake, J.H., 2010. Passion fruit: a functional food? Rev. Bras. Farmacogn. 20, 459–471.

    CAS  Google Scholar 

  49. Zucolotto, S.M., Fagundes, C., Reginatto, F.H., Ramos, F.A., Castellanos, L., Duque, C., Schenkel, E.P., 2012. Analysis of C-glycosyl flavonoids from South American Passiflora species by HPLC-DAD and HPLC-MS. Phytochem. Anal. 23, 232–239.

    CAS  Google Scholar 

  50. Zucolotto, S.M., Goulart, S., Montanher, A.B., Reginatto, F.H., Schenkel, E.P., Fröde, T.S., 2009. Bioassay-guided isolation of anti-inflammatory C-glucosylflavones from Passiflora edulis. Planta Med. 75, 1221–1226.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michelle Frazão Muzitano.

Additional information

Authors’ contributions

TUPK contributed in collecting plant sample, identification and herbarium confection. Conceived and designer the experiments: MFM, EBL, ICRL. Performed the experiments: MHA, ICVS, PFO, ARRB, FAA. Analyzed the data: MHA, ICVS, MFM, EBL, ICRL, DOG, TB, NPL, FAE. Wrote the paper: MHA, MFM, ICVS, RKD. All the authors have read the final manuscript and approved the submission.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Araujo, M.H., da Silva, I.C.V., de Oliveira, P.F. et al. Biological activities and phytochemical profile of Passiflora mucronata from the Brazilian restinga. Rev. Bras. Farmacogn. 27, 702–710 (2017). https://doi.org/10.1016/j.bjp.2017.07.005

Download citation

Keywords

  • Passifloraceae
  • Terpenes
  • Flavonoid
  • Antimycobacterial
  • Immunomodulatory
  • Antioxidant