Phytochemical study of Pilosocereus pachycladus and antibiotic-resistance modifying activity of syringaldehyde

Abstract

Pilosocereus pachycladus F. Ritter, Cactaceae, popularly known as “facheiro”, is used as food and traditional medicine in Brazilian caatinga ecoregion. The plant is used to treat prostate inflammation and urinary infection. The present work reports the first secondary metabolites isolated from P. pachycladus. Therefore, the isolated compound 4-hydroxy-3,5-dimethoxy benzaldehyde (syringaldehyde) was evaluated as modulator of Staphylococcus aureus pump efflux-mediated antibiotic resistance. The isolation of compounds was performed using chromatographic techniques and the structural elucidation was carried out by spectroscopic methods. In order to evaluate syringaldehyde ability to modulate S. aureus antibiotic resistance, its minimum inhibitory concentrations (μg/ml) was first determinate, then, the tested antibiotics minimum inhibitory concentrations were determined in the presence of the syringaldehyde in a sub-inhibitory concentration. The chromatographic procedures led to isolation of twelve compounds from P. pachycladus including fatty acids, steroids, chlorophyll derivatives, phenolics and a lignan. The syringaldehyde did not show any antibacterial activity at 256 (μg/ml against S. aureus. On the other hand the compound was able to reduce the antibiotic concentration (tetracycline, norfloxacin, ethidium bromide) required to inhibit the growth of drug-resistant bacteria, showing the ability of syringaldehyde of inhibiting the efflux pump on these bacteria.

References

  1. Abud, H.F., Gonçalves, N.R., Reis, R.G.E., Pereira, D.S., Bezerra, A.M.E., 2010. Germinação e expressão morfológica de frutos sementes e plântulas de Pilosocereus pachycladus Ritter. Rev. Cienc. Agron. 41, 468–474.

    Article  Google Scholar 

  2. Aguiar, A., Ferraz, A., 2011. Mecanismos envolvidos na biodegradação de mate-riais lignocelulósicos e aplicacões tecnológicas correlatas. Quim. Nova 34, 1729–1738.

    CAS  Google Scholar 

  3. Agra, M.F., Silva, K.N., Basílio, I.J.L.D., Freitas, P.F., Barbosa-Filho, J.M., 2008. Survey of medicinal plants used in the region Northeast of Brazil. Rev. Bras. Farmacogn. 18, 472–508.

    Article  Google Scholar 

  4. Arn, H., Acree, T.E., 1998. Flavornet: a database of aroma compounds based on odor potency in natural products. Dev. Food Sci. 40, 27.

    Article  Google Scholar 

  5. Bang, M.H., Han, J.T., Kim, H.Y., Park, Y.D., Park, C.H., Lee, K.R., Baek, N.I., 2002. 13-hydroxy-9Z, 11E, 15E-octadecatrienoic acid from the leaves of Cucurbita moschata. Arch. Pharm. Res. 25, 438–440.

    CAS  Article  PubMed  Google Scholar 

  6. Brito-Filho, S.G., Fernandes, M.G., Chaves, O.S., Chaves, M.C.O., Araruna, F.B., Eiras, C., Leite, J.R.S.A., Agra, M.F., Braz-Filho, R., Souza, M.F.V., 2014. Chemical constituents isolated from Turnera subulata SM and electrochemical characterization of Phaeophytin b. Quim. Nova 37, 603–609.

    Google Scholar 

  7. Cavalcanti, N.B., Resende, G.M., 2013. Utilização do xique-xique (Pilocereus gounellei (A. Weber ex K. Schum.) Bly. ex Rowl) na alimentação dos animais. Repositório Alice, Available at: http://www.alice.cnptia.embrapa.br/bitstream/doc/132831/1/OPB1201.pdf (accessed 05.01.13).

    Google Scholar 

  8. CLSI, 2005. Performance Standards for Antimicrobial Susceptibility Testing; Fifteenth Informational Supplement. CLSI/NCCLS document M100-S15. Clinical and Laboratory Standards Institute/NCCLS, Wayne, PA.

    Google Scholar 

  9. EFSA, 2010. Conclusion on the peer review of the pesticide risk assessment of the active substance 1-decanol. European Food Safety Authority. EFSA J. 8, 1–42.

    Google Scholar 

  10. Falcão-Silva, V.S., Silva, V.A., Souza, M.F.V., Siqueira-Júnior, J.P., 2009. Modulation of drug resistance in Staphylococcus aureus by a kaempferol glycoside from Herissantia tiubae (Malvaceae). Phytother. Res. 23, 1367–1370.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gibbons, S., 2004. Anti-staphylococcal plant natural products. Nat. Prod. Rep. 21, 263–277.

    CAS  Article  PubMed  Google Scholar 

  12. Hernández-Hernández, T., Hernández, H.M., De-Nova, J.A., Puente, R., Eguiarte, L.E., Magallón, S., 2011. Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). Am. J. Bot. 98, 44–61.

    Article  PubMed  Google Scholar 

  13. Hunt, D., Taylor, N.P., Charles, G., 2006. The New Cactus Lexicon: Descriptions and Illustrations of the Cactus Family. DH Books, Milborne Port, UK.

    Google Scholar 

  14. Ibrahim, M.N.M., Sriprasanthi, R.B., Shamsudeen, S., Adam, F., Bhawani, S.A., 2012. Syringaldehyde: review. BioResources 7, 4377–4399.

    Google Scholar 

  15. Jerz, G., Arrey, T.N., Wray, V., Du, Q., Winterhalter, P., 2007. Characterization of 132-hydroxy-(132-S)-phaeophytin-A from leaves and stems of Amaranthus tricolor isolated by high-speed countercurrent chromatography. Innov. Food Sci. Emerg. Technol. 8, 413–418.

    CAS  Article  Google Scholar 

  16. Kamiya, K., Tanaka, Y., Endang, H., Umar, M., Satake, T., 2004. Chemical constituents of Morinda citrifolia fruits inhibit copper-induced low-density lipoprotein oxidation. J. Agric. Food Chem. 52, 5843–5848.

    CAS  Article  PubMed  Google Scholar 

  17. Kim, H., Ralph, J., Lu, F., Ralph, S.A., Boudet, A.M., MacKay, J.J., Sederoff, R.R., Ito, T., Kawai, S., Ohashi, H., Higuchi, T., 2003. NMR analysis of lignins inCAD-deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins. Org. Biomol. Chem. 1, 268–281.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Kojima, H., Sato, N., Hatano, A., Ogura, H., 1990. Sterol glucosides from Prunella vulgaris. Phytochemistry 29, 2351–2355.

    CAS  Article  Google Scholar 

  19. Liu, Y.P., Cai, X.H., Feng, T., Li, Y., Li, X.N., Luo, X.D., 2011. Triterpene and sterol derivatives from the roots of Breyniafruticosa. J. Nat. Prod. 74, 1161–1168.

    CAS  Article  PubMed  Google Scholar 

  20. López-Cervantes, J., Sánchez-Machado, D.I., Campas-Baypoli, O.N., Bueno-Solano, C., 2011. Functional properties and proximate composition of cactus pearcladodes flours. Ciênc. Tecnol. Aliment. 31, 654–659.

    Article  Google Scholar 

  21. Lucena, C.M., Lucena, R.F.P., Costa, G.M., Carvalho, T.K.N., Costa, G.G.S., Alves, R.R.N., Pereira, D.D., Ribeiro, J.E.S., Alves, C.A.B., Quirino, C.G.M., Nunes, E.N., 2013. Use and knowledge of Cactaceae in Northeastern Brazil. J. Ethnobiol. Ethnomed. 9, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Maciel, J.K.S., Chaves, O.S., Brito Filho, S.G., Teles, Y.C.F., Fernandes, M.G., Assis, T.S., Fernandes, P.D., Andrade, A.P., Felix, L.P., Silva, T.M.S., Ramos, N.S.M., Silva, G.R., Souza, M.F.V., 2016. New alcamide and antioxidant activity of Pilosocereus gounellei A. Weber ex K. Schum. Bly. ex Rowl. (Cactaceae). Molecules 21, 1–13.

    Google Scholar 

  23. Mayworm, M.A.S., Nascimento, A.S., Salatino, A., 1998. Seeds of species from the ‘caatinga’: proteins, oils and fatty acid contents. Rev. Bras. Bot. 21, 299–303.

    Article  Google Scholar 

  24. Pavia, D.L., Lampman, G.M., Kriz, G.S., Vyvyan J.R., 2010. Introdução à Espectroscopia, 4th ed. Cengage Learning Publishing House, São Paulo, Brazil.

    Google Scholar 

  25. Piddock, L.J.V., 2006. Clinically relevant chromosomally encoded multidrug resistance elux pumps in bacteria. Clin. Microbiol. Rev. 19, 382–402.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Sanchez, E., Dávila-Avina, J., Castillo, S.L., Heredia, N., Vazquez-Alvarado, R., García, S., 2014. Antibacterial and antioxidant activities in extracts of fully grown cladodes of 8 cultivars of cactus pear. J. Food Sci. 79, 659–664.

    Article  Google Scholar 

  27. Schwikkard, S.L., Mulholland, D.A., Hutchings, A., 1998. Phaeophytins from Tapura fisheri. Phytochemistry 49, 2391–2394.

    CAS  Article  Google Scholar 

  28. Silva, S.M.F.Q., Botelho, S.M., Pinheiro, M.V., Ferreira, Q.M.C., Pranchevicius, J.G., Díaz Castro, M.C.P., Carreiro, C.S., 2012. Atividade in vitro de extratos brutos de duas espécies vegetais do cerrado sobre leveduras do gênero Candida. Cienc. Saude Coletiva 17, 1649–1656.

    Article  Google Scholar 

  29. Teles, Y.C.F., Gomes, R.A., Oliveira, M.S., Lucena, K.L., Nascimento, J.S., Agra, M.F., Igoli, J.O., Gray, A.I., Souza, M.F.V., 2014. Phytochemical investigation of Wissadula periplocifolia (L.) C Presl and evaluation of its antibacterial activity. Quim. Nova 37, 1491–1495.

    CAS  Google Scholar 

  30. Zappi, D., Taylor, N., Machado, M., 2010. Cactaceae in Lista de Espécies da Flora do Brasil. Botanical Garden of Rio de Janeiro, http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB70.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria de Fátima Vanderlei de Souza.

Additional information

Authors’ contributions

SGBF, JKSM, MMMSF, MDLF worked on the extraction, partition and chromatography procedures. YCFT, OSC, RBF, MFVS worked on spectroscopy and structural elucidation. PDF and LPF contributed in plant collection, identification and herbarium confection. JPSJ and ICSC worked on biological assays. All the authors have read the final manuscript and approved the submission.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Brito-Filho, S.G., da Maciel, J.K.S., Teles, Y.C.F. et al. Phytochemical study of Pilosocereus pachycladus and antibiotic-resistance modifying activity of syringaldehyde. Rev. Bras. Farmacogn. 27, 453–458 (2017). https://doi.org/10.1016/j.bjp.2017.06.001

Download citation

Keywords

  • Forage cactus
  • Caatinga ecoregion
  • Cactaceae
  • Phytochemical study
  • Antibacterial activity
  • Resistant Staphylococcus aureus