Aflatoxins produced by Aspergillus nomius ASR3, a pathogen isolated from the leaf-cutter ant Atta sexdens rubropilosa

Abstract

Aspergillus spp. cause economic impacts due to aflatoxins production. Although the toxicity of aflatoxins is already known, little information about their ecological roles is available. Here we investigated the compounds produced by Aspergillus nomius ASR3 directly from a dead leaf-cutter queen ant Atta sexdens rubropilosa and the fungal axenic culture. Chemical analyses were carried out by high-resolution mass spectrometry and tandem mass spectrometry techniques. Aflatoxins B1 and G1 were detected in both the axenic culture and in the dead leaf-cutter queen ant. The presence of these mycotoxins in the dead leaf-cutter queen ant suggests that these compounds can be related to the insect pathogenicity of A. nomius against A. sexdens rubropilosa.

References

  1. Cavaliere, C., Foglia, P., Guarino, C., Nazzari, M., Samperi, R., Laganà, A., 2007. Determination of aflatoxins in olive oil by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 596, 141–148.

    CAS  Article  PubMed  Google Scholar 

  2. Chouvenc, T., Efstathion, C.A., Elliott, M.L., Su, N.Y., 2012. Resource competition between two fungal parasites in subterranean termites. Naturwissenschaften 99, 949–958.

    CAS  Article  PubMed  Google Scholar 

  3. Crotti, A.E.M., Bronze-Uhle, E.S., Nascimento, P.G.B.D., Donate, P.M., Galembeck, S.E., Vessecchi, R., Lopes, N.P., 2009. Gas-phase fragmentation of 7-lactone derivatives by electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 44, 1733–1741.

    CAS  PubMed  Google Scholar 

  4. Currie, C.R., Mueller, U.G., Malloch, D., 1999. The agricultural pathology of ant fungus gardens. Proc. Natl. Acad. Sci. U. S. A. 96, 7998–8002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Currie, C.R., Poulsen, M., Mendenhall, J., Boomsma, J.J., Billen, J., 2006. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311, 81–83.

    CAS  Article  Google Scholar 

  6. Demarque, D.P., Crotti, A.E.M., Vessecchi, R., Lopes, J.L.C., Lopes, N.P., 2016. Fragmentation reactions using electrospray ionization mass spectrometry: an important tool for the structural elucidation and characterization of synthetic and natural products. Nat. Prod. Rep. 33, 432–455.

    CAS  Article  PubMed  Google Scholar 

  7. Gacem, M.A., Hadj-Khelil, A.O.E., 2016. Toxicology, biosynthesis, bio-control of afla-toxin and new methods of detection. Asian Pac. J. Trop. Biomed. 6, 808–814.

    Article  Google Scholar 

  8. Gloer, J.B., Rinderknecht, B.L., Wicklow, D.T., Dowd, P.F., 1989. Nominine: a new insecticidal indole diterpene from the sclerotia of Aspergillus nomius. J. Org. Chem. 54, 2530–2532.

    CAS  Article  Google Scholar 

  9. Gunst, K., Chinnici, J.P., Llewellyn, G.C., 1982. Effects of aflatoxin B1, aflatoxin B2, aflatoxin G1, and sterigmatocystin on viability, rates of development, and body length in two strains of Drosophila melanogaster (Diptera). J. Invertebr. Pathol. 39, 388–394.

    CAS  Article  PubMed  Google Scholar 

  10. Haeder, S., Wirth, R., Herz, H., Spiteller, D., 2009. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc. Natl. Acad. Sci. U. S. A. 106, 4742–4746.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Hölldobler, B., Wilson, E.O., 1990. The Ants. Belknap Press, Cambridge.

    Google Scholar 

  12. Kirk, H.D., 1971. Effect of aflatoxin B1 on development of Drosophila melanogaster (Diptera). J. Invertebr. Pathol. 18, 313–315.

    CAS  Article  PubMed  Google Scholar 

  13. Licht, H.H., Boomsma, J.J., Tunlid, A., 2014. Symbiotic adaptations in the fungal cultivar of leaf-cutting ants. Nat. Commun. 5, 5675.

    Article  Google Scholar 

  14. Matsumura, F., Knight, S.G., 1967. Toxicity and chemosterilizing activity of aflatoxin against insects. J. Econ. Entomol. 60, 871–872.

    CAS  Article  PubMed  Google Scholar 

  15. Niu, G., Siegel, J., Schuler, M.A., Berenbaum, M.R., 2009. Comparative toxicity of mycotoxins to navel orangeworm (Amyelois transitella) and corn earworm (Helicoverpazea). J. Chem. Ecol. 35, 951–957.

    CAS  Article  PubMed  Google Scholar 

  16. Niu, G., Wen, Z., Rupasinghe, S.G., Ren, S.Z., Berenbaum, M.R., Schuler, M.A., 2008. Aflatoxin B1 detoxification by CYP321A1 in Helicoverpa zea. Arch. Insect Biochem. Physiol. 69, 32–45.

    CAS  Article  PubMed  Google Scholar 

  17. Oh, D.C., Poulsen, M., Currie, C.R., Clardy, J., 2009. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat. Chem. Biol. 5, 391–393.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Pagnocca, F.C., Masiulionis, V.E., Rodrigues, A., 2012. Specialized fungal parasites and opportunistic fungi in gardens of attine ants. Psyche (Stuttg), https://doi.org/10.1155/2012/905109.

    Google Scholar 

  19. Poulsen, M., Hughes, W.O.H., Boomsma, J.J., 2006. Differential resistance and the importance of antibiotic production in Acromyrmex echinatior leaf-cutting ant castes towards the entomopathogenic fungus Aspergillus nomius. Insect. Soc. 53, 349–355.

    Article  Google Scholar 

  20. Santos, A.V., Dillon, R.J., Dillon, V.M., Reynolds, S.E., Samuels, R.I., 2004. Occurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens rubropilosa. FEMS Microbiol. Lett. 239, 319–323.

    CAS  Article  PubMed  Google Scholar 

  21. Schoenian, I., Spiteller, M., Ghaste, M., Wirth, R., Herz, H., Spiteller, D., 2011. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc. Natl. Acad. Sci. U. S. A. 108, 1955–1960.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Schultz, T.R., Brady, S.G., 2008. Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. U. S. A. 105, 5435–5440.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Seipke, R.F., Barke, J., Brearley, C., Hill, L., Yu, D.W., Goss, R.J.M., Hutchings, M.I., 2011. A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS ONE 6, 1–8.

    Article  Google Scholar 

  24. Sirhan, A.Y., Tan, G.H., Wong, R.C.S., 2013. Determination of aflatoxins in food using liquid chromatography coupled with electrospray ionization quadrupole time of flight mass spectrometry (LC-ESI-QTOF-MS/MS). Food Control 31, 35–44.

    CAS  Article  Google Scholar 

  25. Staub, G.M., Gloer, J.B., Wicklow, D.T., Dowd, P.F., 1992. Aspernomine: a cytotoxic antiinsectan metabolite with a novel ring system from the sclerotia of Aspergillus nomius. J. Am. Chem. Soc. 114, 1015–1017.

    CAS  Article  Google Scholar 

  26. Tóth, K., Nagy, L., Mándi, A., Kuki, Á., Mézes, M., Zsuga, M., Kéki, S., 2013. Collision-induced dissociation of aflatoxins. Rapid Commun. Mass Spectrom. 27, 553–559.

    Article  PubMed  Google Scholar 

  27. Van Arnam, E.B., Ruzzini, A.C., Sit, C.S., Horn, H., Pinto-Tomás, A.A., Currie, C.R., Clardy, J., 2016. Selvamicin, an atypical antifungal polyene from two alternative genomic contexts. Proc. Natl. Acad. Sci. U. S. A. 113, 12940–12945.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vessecchi, R., Zocolo, G.J., Gouvea, D.R., Huebner, F., Cramer, B., Marchi, M.R.R., Humpf, H.U., Lopes, N.P., 2011. Re-examination of the anion derivatives of isoflavones by radical fragmentation in negative electrospray ionization tandem mass spectrometry: experimental and computational studies. Rapid Commun. Mass Spectrom. 25, 2020–2026.

    CAS  Google Scholar 

  29. Weber, N.A., 1966. Fungus-growing ants. Science 153, 587–604.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mônica Tallarico Pupo.

Additional information

Authors’ contributions

LCAV and FSN contributed with the collection and identification of the leaf-cutter queen ant. EASJ and CRP contributed with the laboratory work, data analysis and drafted the paper. NPL contributed with mass spectrometry data acquisition and analysis. MTP supervised the laboratory work and contributed with critical reading of the manuscript. All the authors have read the final manuscript and approved the submission.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva-Junior, E.A., Paludo, C.R., Valadares, L. et al. Aflatoxins produced by Aspergillus nomius ASR3, a pathogen isolated from the leaf-cutter ant Atta sexdens rubropilosa. Rev. Bras. Farmacogn. 27, 529–532 (2017). https://doi.org/10.1016/j.bjp.2017.05.001

Download citation

Keywords

  • Aflatoxins
  • Aspergillus nomius
  • Leaf-cutter ants
  • Mass spectrometry
  • Chemical ecology