Induction of apoptosis by Moutan Cortex Radicis in human gastric cancer cells through the activation of caspases and the AMPK signaling pathway

Abstract

Moutan Cortex Radicis, the root bark of Paeonia × suffruticosa Andrews, Paeoniaceae, has been widely used in traditional medicine therapy. Although it has been shown to possess many pharmacological activities, the molecular mechanisms of its anti-cancer activity have not been clearly elucidated. In the present study, we investigated the pro-apoptotic effects of the ethanol extract of Moutan Cortex Radicis in human gastric cancer AGS cells. Moutan Cortex Radicis treatment inhibited the cell viability of AGS cells in a concentration-dependent manner, which was associated with apoptotic cell death. Moutan Cortex Radicis’s induction of apoptosis was connected with the upregulation of death receptor 4, death receptor 5, tumor necrosis factor-related apoptosis-inducing ligand, Fas ligand, and Bax, and the downregulation of Bcl-2 and Bid. Moutan Cortex Radicis treatment also induced the loss of mitochondrial membrane potential (Δψm), the proteolytic activation of caspases (−3, −8, and −9), and the degradation of poly(ADP-ribose) polymerase, an activated caspase-3 substrate protein. However, the pre-treatment of a caspase-3 inhibitor significantly attenuated Moutan Cortex Radiris-induced apoptosis and cell viability reduction. In addition, Moutan Cortex Radicis treatment effectively activated the adenosine monophosphate-activated protein kinase signaling pathway; however, a specific inhibitor of AMPK significantly reduced Moutan Cortex Radiris-induced apoptosis. Overall, the results suggest that the apoptotic activity of Moutan Cortex Radicis may be associated with a caspase-dependent cascade through the activation of both extrinsic and intrinsic signaling pathways connected with adenosine monophosphate-activated protein kinase activation, and Moutan Cortex Radicis as an activator of adenosine monophosphate-activated protein kinase could be a prospective application to treat human cancers.

References

  1. Broker, L.E., Kruyt, F.A., Giaccone, G., 2005. Cell death independent of caspases: a review. Clin. Cancer Res. 11, 3155–3162.

    PubMed  Google Scholar 

  2. Buzzai, M., Jones, R.G., Amaravadi, R.K., Lum, J.J., DeBerardinis, R.J., Zhao, F., Viollet, B., Thompson, C.B., 2007. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752.

    CAS  PubMed  Google Scholar 

  3. Cai, J., Chen, S., Zhang, W., Hu, S., Lu, J., Xing, J., Dong, Y., 2014. Paeonol reverses paclitaxel resistance in human breast cancer cells by regulating the expression of transgelin 2. Phytomedicine 21, 984–991.

    CAS  PubMed  Google Scholar 

  4. Chen, H., Wang, J.P., Santen, R.J., Yue, W., 2015. Adenosine monophosphate activated protein kinase (AMPK), a mediator of estradiol-induced apoptosis in long-term estrogen deprived breast cancer cells. Apoptosis 20, 821–830.

    CAS  PubMed  Google Scholar 

  5. Chiang, P.C., Lin, S.C., Pan, S.L., Kuo, C.H., Tsai, I.L., Kuo, M.T., Wen, W.C., Chen, P., Guh, J.H., 2010. Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways. Biochem. Pharmacol. 79, 162–171.

    CAS  PubMed  Google Scholar 

  6. Choi, H.S., Seo, H.S., Kim, J.H., Um, J.Y., Shin, Y.C., Ko, S.G., 2012. Ethanol extract of Paeonia suffruticosa Andrews (PSE) induced AGS human gastric cancer cell apoptosis via fas-dependent apoptosis and MDM2-p53 pathways. J. Biomed. Sci. 19, 82.

    PubMed  PubMed Central  Google Scholar 

  7. Cory, S., Adams, J.M., 2002. The Bcl2 family: regulators of the cellular life-of-death switch. Nat. Rev. Cancer 2, 647–656.

    CAS  PubMed  Google Scholar 

  8. Cregan, S.P., Dawson, V.L., Slack, R.S., 2004. Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23, 2785–2796.

    CAS  PubMed  Google Scholar 

  9. Eom, D.W., Lee, J.H., Kim, Y.J., Hwang, G.S., Kim, S.N., Kwak, J.H., Cheon, G.J., Kim, K.H., Jang, H.J., Ham, J., Kang, K.S., Yamabe, N., 2015. Synergistic effect of curcumin on epigallocatechin gallate-induced anticancer action in PC3 prostate cancer cells. BMB Rep. 48, 461–466.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fan, L., Song, B., Sun, G., Ma, T., Zhong, F., Wei, W., 2013. Endoplasmic reticulum stress-induced resistance to doxorubicin is reversed by paeonol treatment in human hepatocellular carcinoma cells. PLoS ONE 8, e62627.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng, Z., Hu, W., de Stanchina, E., Teresky, A.K., Jin, S., Lowe, S., Levine, A.J., 2007. The regulation of AMPK betal, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 67, 3043–3053.

    CAS  PubMed  Google Scholar 

  12. Figarola, J.L., Singhal, J., Tompkins, J.D., Rogers, G.W., Warden, C., Home, D., Riggs, A.D., Awasthi, S., Singhal, S.S., 2015. SR4 uncouples mitochondrial oxidative phosphorylation, modulates AMP-dependent kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling, and inhibits proliferation of HepG2 hepatocar-cinoma Cells. J. Biol. Chem. 290, 30321–30341.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fu, P.K., Wu, C.L., Tsai, T.H., Hsieh, C.L., 2012. Anti-inflammatory and anticoagula-tive effects of paeonol on LPS-induced acute lung injury in rats. Evid. Based Complement. Alternat. Med. 2012, 837513.

    PubMed  PubMed Central  Google Scholar 

  14. Fulda, S., Debatin, K.M., 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798–4811.

    CAS  PubMed  Google Scholar 

  15. Gao, Y., He, C., Ran, R., Zhang, D., Li, D., Xiao, P.G., Altman, E., 2015. The resveratrol oligomers, cis- and trans-gnetin H, from Paeonia suffruticosa seeds inhibit the growth of several human cancer cell lines.J. Ethnopharmacol. 169, 24–33.

    CAS  Google Scholar 

  16. Gwinn, D.M., Shackelford, D.B., Egan, D.F., Mihaylova, M.M., Mery, A., Vasquez, D.S., Turk, B.E., Shaw, R.J., 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hardie, D.G., 2004. The AMP-activated protein kinase pathway-new players upstream and downstream. J. Cell Sci. 117, 5479–5487.

    CAS  PubMed  Google Scholar 

  18. Hensley, P., Mishra, M., Kyprianou, N., 2013. Targeting caspases in cancer therapeutics. Biol. Chem. 394, 831–843.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirai, A., Terano, T., Hamazaki, T., Sajiki, J., Saito, H., Tahara, K., Tamura, Y., Kumagai, A., 1983. Studies on the mechanism of antiaggregatory effect of Moutan Cortex. Thromb. Res. 31, 29–40.

    CAS  PubMed  Google Scholar 

  20. Jeon, S.M., 2016. Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med. 48, e245.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kantari, C., Walczak, H., 2011. Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim. Biophys. Acta 1813, 558–563.

    CAS  PubMed  Google Scholar 

  22. Kim, H.G., Park, G., Piao, Y., Kang, M.S., Pak, Y.K., Hong, S.P., Oh, M.S., 2014. Effects of the root bark of Paeonia suffruticosa on mitochondria-mediated neuroprotection in an MPTP-induced model of Parkinson’s disease. Food Chem. Toxicol. 65, 293–300.

    CAS  PubMed  Google Scholar 

  23. Laderoute, K.R., Amin, K., Calaoagan, J.M., Knapp, M., Le, T., Orduna, J., Foretz, M., Viollet, B., 2006. 5’-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol. Cell Biol. 26, 5336–5347.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, L.Y., Luo, X., Wang, X., 2001. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99.

    CAS  Google Scholar 

  25. Li, M., Tan, S.Y., Wang, X.F., 2014. Paeonol exerts an anticancer effect on human colorectal cancer cells through inhibition of PGE2 synthesis and COX-2 expression. Oncol. Rep. 32, 2845–2853.

    CAS  PubMed  Google Scholar 

  26. Lovell, J.F., Billen, L.P., Bindner, S., Shamas-Din, A., Fradin, C., Leber, B., Andrews, D.W., 2008. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135, 1074–1084.

    CAS  Google Scholar 

  27. MacKenzie, S.H., Clark, A.C., 2008. Targeting cell death in tumors by activating cas-pases. Curr. Cancer Drug Targets 8, 98–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Monteverde, T., Muthalagu, N., Port, J., Murphy, D.J., 2015. Evidence of cancer-promoting roles for AMPK and related kinases. FASEBJ. 282, 4658–4671.

    CAS  Google Scholar 

  29. Mukudai, Y., Kondo, S., Shiogama, S., Koyama, T., Li, C., Yazawa, It, Shintani, S., 2013. Root bark extracts of Juncus effusus and Paeonia suffruticosa protect salivary gland acinar cells from apoptotic cell death induced by cis-platinum (II) diammine dichloride. Oncol. Rep. 30, 2665–2671.

    PubMed  Google Scholar 

  30. Nieminen, A.I., Eskelinen, V.M., Haikala, H.M., Tervonen, T.A., Yan, Y., Partanen, J.I., Klefström, J., 2013. Myc-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis. Proc. Natl. Acad. Sci. U.S.A. 110, 1839–1848.

    Google Scholar 

  31. Pan, D., Dong, J., Zhang, Y., Gao, X., 2004. Tuberous sclerosis complex: from Drosophila to human disease. Trends Cell Biol. 14, 78–85.

    CAS  Google Scholar 

  32. Park, J., Kim, H.Y., Lee, S.M., 2011. Protective effects of Moutan Cortex Radius against acute hepatotoxicity. Afr. J. Tradit. Complement. Altern. Med. 8, 220–225.

    PubMed  PubMed Central  Google Scholar 

  33. Peng, L.H., Liu, S., Xu, S.Y., Chen, L., Shan, Y.H., Wei, W., Liang, W.Q., Gao, J.Q., 2013. Inhibitory effects of salidroside and paeonol on tyrosinase activity and melanin synthesis in mouse B16F10 melanoma cells and ultraviolet B-induced pigmentation in guinea pigskin. Phytomedicine 20, 1082–1087.

    CAS  PubMed  Google Scholar 

  34. Poon, T.Y., Ong, K.L., Cheung, B.M., 2011. Review of the effects of the traditional Chinese medicine Rehmannia Six Formula on diabetes mellitus and its complications. J. Diabetes 3, 184–200.

    PubMed  Google Scholar 

  35. Rho, S., Chung, H.S., Kang, M., Lee, E., Cho, C., Kim, H., Park, S., Kim, H.Y., Hong, M., Shin, M., Bae, H., 2005. Inhibition of production of reactive oxygen species and gene expression profile by treatment of ethanol extract of Moutan Cortex Radios in oxidative stressed PC12 cells. Biol. Pharm. Bull. 28, 661–666.

    CAS  PubMed  Google Scholar 

  36. Rubinsztein, D.C., Gestwicki, J.E., Murphy, L.O., Klionsky, D.J., 2007. Potential therapeutic applications of autophagy. Nat. Rev. Drug Discov. 6, 304–312.

    CAS  PubMed  Google Scholar 

  37. Sauer, H., Engel, S., Milosevic, N., Sharifpanah, F., Wartenberg, M., 2012. Activation of AMP-kinase by AICAR induces apoptosis of DU-145 prostate cancer cells through generation of reactive oxygen species and activation of c-junJV-terminal kinase. Int. J. Oncol. 40, 501–508.

    CAS  PubMed  Google Scholar 

  38. Shackelford, D.B., Shaw, R.J., 2009. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shamas-Din, A., Brahmbhatt, H., Leber, B., Andrews, D.W., 2011. BH3-only proteins: orchestrators of apoptosis. Biochim. Biophys. Acta 1813, 508–520.

    CAS  PubMed  Google Scholar 

  40. Shaw, R.J., Bardeesy, N., Manning, B.D., Lopez, L., Kosmatka, M., DePinho, R.A., Cantley, L.C., 2004. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6, 91–99.

    CAS  PubMed  Google Scholar 

  41. Sui, X., Xu, Y., Yang, J., Fang, Y., Lou, H., Han, W., Zhang, M., Chen, W., Wang, K., Li, D., Jin, W., Lou, F., Zheng, Y., Hu, H., Gong, L., Zhou, X., Pan, Q., Pan, H., Wang, X., He, C., 2014. Use of metformin alone is not associated with survival outcomes of colorectal cancer cell but AMPK activator AICAR sensitizes anticancer effect of 5-fIuorouracil through AMPK activation. PLOS ONE 9, e97781.

    PubMed  PubMed Central  Google Scholar 

  42. Tran, Q., Lee, H., Park, J., Kim, S.H., Park, J., 2016. Targeting cancer metabolism -revisiting the Warburg effects. Toxicol. Res. 32, 177–193.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, S.C., Tang, S.W., Lam, S.H., Wang, C.C., Liu, Y.H., Lin, H.Y., Lee, S.S., Lin, J.Y., 2012. Aqueous extract of Paeonia suffruticosa inhibits migration and metastasis of renal cellcarcinomacellsviasuppressingVEGFR-3 pathway. Evid. Based Complement. Alternat. Med. 2012, 409823.

    PubMed  PubMed Central  Google Scholar 

  44. Woods, A., Johnstone, S.R., Dickerson, K., Leiper, F.C., Fryer, L.G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M., Carling, D., 2003. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008.

    CAS  PubMed  Google Scholar 

  45. Xu, Z.X., Liang, J., Haridas, V., Gaikwad, A., Connolly, F.P., Mills, G.B., Gutterman, J.U., 2007. A plant triterpenoid, avicin D, induces autophagy by activation of AMP-activated protein kinase. Cell Death Differ. 14, 1948–1957.

    CAS  PubMed  Google Scholar 

  46. You, M.K., Kim, M.S., Jeong, K.S., Kim, E., Kim, Y.J., Kim, H.A., 2016. Loquat (Eriobotrya japonica) leaf extract inhibits the growth of MDA-MB-231 tumors in nude mouse xenografts and invasion of MDA-MB-231 cells. Nutr. Res. Pract. 10, 139–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yun, C.S., Choi, Y.G., Jeong, M.Y., Lee, J.H., Lim, S., 2013. Moutan Cortex Radicis inhibits inflammatory changes of gene expression in lipopolysaccharide-stimulated gingival fibroblasts. J. Nat. Med. 67, 576–589.

    CAS  PubMed  Google Scholar 

  48. Zakikhani, M., Dowling, R., Fantus, I.G., Sonenberg, N., Pollak, M., 2006. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269–10273.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wun-Jae Kim or Yung Hyun Choi.

Additional information

Authors’ contributions

CP, MHH, SHP and SHH contributed in running the laboratory work, analysis of the data and drafted the paper. GYK and SKM contributed to critical reading of the manuscript. WJK and YHC designed the study, supervised the laboratory work and contributed to critical reading of the manuscript. All the authors have read the final manuscript and approved the submission.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, C., Han, M., Park, S. et al. Induction of apoptosis by Moutan Cortex Radicis in human gastric cancer cells through the activation of caspases and the AMPK signaling pathway. Rev. Bras. Farmacogn. 27, 315–323 (2017). https://doi.org/10.1016/j.bjp.2016.11.003

Download citation

Keywords

  • Moutan Cortex Radicis
  • Gastric cancer
  • Apoptosis
  • Caspase
  • AMPK