Laboratory evaluation of Clusia fluminensis extracts and their isolated compounds against Dysdercus peruvianus and Oncopeltus fasciatus

Abstract

The effects of the hexanic extracts of the fruits and flowers of Clusia fluminensis Planch. & Triana, Clusiaceae, as well as their main constituents, the triterpene lanosterol and the benzophenone clusianone, were evaluated on hemipterans Dysdercus peruvianus and Oncopeltus fasciatus. The topical treatments of insects with the hexanic extracts significantly affected the survival of O. fasciatus, but not that of D. peruvianus. Concomitantly, extracts delayed the development of both hemipterans. Moreover, isolated lanosterol significantly reduced both the survival and development of O. fasciatus and D. peruvianus, while clusianone only reduce the survival of D. peruvianus and marginally inhibited the development of both insects. The results show the specific activity of lanosterol and clusianone against the two evaluated insect species and indicate the potential of compounds derived from C. fluminensis for the development of specific biopesticides for the control of agricultural pests. Subsequent work will examine the mode of action of lanosterol and clusianone isolates from C. fluminensis.

References

  1. Alexenizer, M., Dorn, A., 2007. Screening of medicinal and ornamental plants for insecticidal and growth regulating activity. J. Pest. Sci. 80, 205–215.

    Google Scholar 

  2. Anholeti, M.C., Duprat, R.C., Figueiredo, M.R., Kaplan, M.A.C., Santos, M.G., Gonzalez, M.S., Ratcliffe, N.A., Feder, D., Paiva, S.R., Mello, C.B., 2015. Biocontrol evaluation of extracts and a major component, clusianone, from Clusia fluminensis Planch. & Triana against Aedes aegypt. Mem. I. Oswaldo Cruz 110, 629–635.

    CAS  Google Scholar 

  3. Barrios, M., Calvo, M., Arguedas, E., Castro, O., 1990. Constituents of Clusia uvitana. Fitoterapia 61, 479.

    Google Scholar 

  4. Beerhues, L., Liu, B., 2009. Biosynthesis of biphenyls and benzophenones - evolution of benzoic acid-specific type III polyketide synthases in plants. Phytochemistry 70, 1719–1727.

    CAS  PubMed  Google Scholar 

  5. Berger, R.L., 1996. A Fortran program - XUN2X2 version 2.0, http://www.public.asu.edu/~rlberge1/software/xun2x2v2.f. Online interactive version available at: http://www4.stat.ncsu.edu/~boos/exact/.

    Google Scholar 

  6. Bittrich, V., 2010. Clusiaceae in Lista de espécies da florado Brasil. Jardim Botânico do Rio de Janeiro, Brasil http://floradobrasil.jbrj.gov.br/2010/FB000089 [accessed August 2010].

    Google Scholar 

  7. Bowers, W.S., Aldrich, J.R., 1980. In vivo inactivation of denervated corpora allata by precocene II in the bug, Oncopeltus fasciatus. Experientia 36, 362–364.

    CAS  Google Scholar 

  8. Bowers, W.S., Ohta, T., Cleere, J.S., Marsella, P.A., 1976. Discovery of insect anti-juvenile hormones in plants. Science 193, 542–547.

    CAS  PubMed  Google Scholar 

  9. Calhoun, P., 2015. Exact: Unconditional Exact Test. R package version 1.6. https://CRAN.R-project.org/package=Exact.

    Google Scholar 

  10. Compagnone, R.S., Suarez, A.C., Leitao, S.G., Delle Monache, F., 2008. Flavonoids, benzophenones and a new euphane derivative from Clusia columnaris Engl. Rev. Bras. Farmacogn. 18, 6–10.

    CAS  Google Scholar 

  11. da Silva, F.C., de Barros, F.M.C., Prophiro, J.S., da Silva, O.S., Pereira, T.N., Bordignon, S.A.L., Eifler-Lima, V.L., von Poser, G.L., 2013. Larvicidal activity of lipophilic extract of Hypericum carinatum (Clusiaceae) against Aedes aegypti (Diptera: Culicidae) and benzophenones determination. Parasitol. Res. 112, 2367–2371.

    PubMed  Google Scholar 

  12. De Andrade, M.R., Almeida, E.X., Conserva, L.M., 1998. Alkyl chromone and other compounds from Clusia nemorosa. Phytochemistry 47, 1431–1433.

    Google Scholar 

  13. Erezyilmaz, D.F., Riddiford, L.M., Truman, W., 2006. The pupal specifier broad directs progressive morphogenesis in a direct-developing insect. Proc. Natl. Acad. Sci. U. S. A. 103, 6925–6930.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Erguler, K., 2015. Barnard: Barnard’s Unconditional Test. R package version 1.6. https://CRAN.R-project.org/package=Barnard.

    Google Scholar 

  15. Feir, D., 1974. Oncopeltus fasciatus: a research animal. Annu. Rev. Entomol. 19, 81–96.

    Google Scholar 

  16. Feir, D., Beck, S.D., 1963. Feeding behavior of the large milkweed bug, Oncopeltus fasciatus. Annu. Entomol. Soc. Am. 56, 224–229.

    CAS  Google Scholar 

  17. Fernandes, C.P., Xavier, A., Pacheco, J.P.F., Santos, M.G., Mexas, R., Ratcliffe, N.A., Gonzalez, M.S., Mello, C.B., Rocha, L., Feder, D., 2013. Laboratory evaluation of the Manilkara subsericea (Mart.) Dubard extracts and triterpenes on development of Dysdercus peruvianus and Oncopeltus fasciatus. Pest. Manag. Sci. 69, 292–301.

    CAS  PubMed  Google Scholar 

  18. Gallo, D., 1988. Manual de Entomologia Agrícola, 2nd ed. Ceres, São Paulo, Brazil, pp. 649.

    Google Scholar 

  19. Giorgi, A., De Marinis, P., Granelli, G., Chiesa, L.M., Panseri, S., 2013. Secondary metabolite profile, antioxidant capacity, and mosquito repellent activity of Bixa orellana from Brazilian Amazon region. J. Chem., https://doi.org/10.1155/2013/409826.

    Google Scholar 

  20. Guimarães, A.L.A., Bizarri, C.H.B., Barbosa, L.S., Nakamura, M.J., Ramos, M.F.S., Vieira, A.C.M., 2013. Characterisation of the effects of leaf galls of Clusiamyia nitida (Cecidomyiidae) on Clusia lanceolata Cambess. (Clusiaceae): anatomical aspects and chemical analysis of essential oil. Flora 208, 165–173.

    Google Scholar 

  21. Hemingway, J., Ranson, H., 2000. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 371–391.

    CAS  PubMed  Google Scholar 

  22. Isman, N.B., 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 51, 45–66.

    CAS  PubMed  Google Scholar 

  23. Jurberg, J., Costa, J.M., Goncalves, T.C., Garcia, E.S., Azambuja, P., 1984. Morphogenetic effects of precocene II on nymphs of Rhodnius prolixus (Stal, 1859) (Hemiptera-Triatominae). Mem. I. Oswaldo Cruz 79, 397–407.

    CAS  Google Scholar 

  24. Kelly, T.J., Fuchs, M.S., 1978. Precocene is not a specific antigonadotropic agent in adult female Aedes aegypti. Physiol. Entomol. 3, 297–301.

    CAS  Google Scholar 

  25. Li, W.Q., Zhang, Z.J., Nan, X., Liu, Y.Q., Hu, G.F., Yu, H.T., Zhao, X.B., Wua, D., Yana, L.T., 2014. Design, synthesis and bioactivity evaluation of novel benzophenone hydrazone derivatives. Pest. Manag. Sci. 70, 667–673.

    CAS  PubMed  Google Scholar 

  26. Liu, P., Kaufman, T.C., 2009. Morphology and husbandry of the large milkweed bug, Oncopeltus fasciatus. Cold Spring Harb. Protoc. 8, 127.

    Google Scholar 

  27. Longnecker, M.P., Klebanoff, M.A., Zhou, H., Brock, J.W., 2001. Association between maternal serum concentration of the DDT metabolite DDE and preterm and small-for-gestational-age babies at birth. Lancet 358, 110–114.

    CAS  PubMed  Google Scholar 

  28. Marín, R.M., Montes, P.O.R., Bello, A.A., Nival, V.L.A., 2008. Caracterización por cromatografía de gases/espectrometría de masas del extracto apolar de las hojas de Clusia minor L. Lat. Am. J. Pharm. 27, 747–751.

    Google Scholar 

  29. Masner, P., Bowers, W.S., Kälin, M., Mühle, T., 1979. Effect of precocene II on the endocrine regulation of development and reproduction in the bug, Oncopeltus fasciatus. Gen. Comp. Endocrinol. 37, 156–166.

    CAS  PubMed  Google Scholar 

  30. McGraw, E.A., O’Neill, S.L., 2013. Beyond insecticides: new thinking on an ancient problem. Nat. Rev. Microbiol. 11, 181–193.

    CAS  PubMed  Google Scholar 

  31. Mendonca, F.A.C., Silva, K.F.S., Santos, K.K., Ribeiro, K.A.L., Santana, A.E.G., 2005. Activities of some Brazilian plants against larvae of the mosquito Aedes aegypti. Fitoterapia 76, 629–636.

    PubMed  Google Scholar 

  32. Merzendorfer, H., Zimoch, L., 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 206, 4393–4412.

    CAS  PubMed  Google Scholar 

  33. Miao, L., Nielsen, M., Thewalt, J., Ipsen, J.H., Bloom, M., Zuckermann, M.J., Mouritsen, O.G., 2002. From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers. Biophys. J. 82, 1429–1444.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Middleton, W.J., Chadds, F., 1970. Benzophenone hydrazones containing peruoroalkyl, peruoroalkoxy and peruoroalkylthio substituents. United States patent US 3732307,1970 Set 24, 1973 May 8.

    Google Scholar 

  35. Milano, P., Consoli, F.L., Zerio, N.G., Parra, J.R.P., 1999. Thermal requirements of the cotton stainer Dysdercus peruvianus Guerin-Meneville (Heteroptera: Pyrrhocoridae). Ann. Soc. Entomol. Bras. 28, 233–238.

    Google Scholar 

  36. Miresmailli, S., Isman, M.B., 2014. Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant Sci. 19, 29–35.

    CAS  PubMed  Google Scholar 

  37. Nagem, T.J., Mesquita, A.A.L., Silva, R., 1993. Constituents of Clusia fluminensis. Fitoterapia 64, 380.

    CAS  Google Scholar 

  38. Oliveira, E.C., Anholeti, M.C., Domingos, T.F., Faioli, C.N., Sanchez, E.F., Paiva, S.R., Fuly, A.L., 2014. Inhibitory effect of the plant Clusia fluminensis against biological activities of Bothrops jararaca Snake Venom. Nat. Prod. Commun. 9, 21–25.

    PubMed  Google Scholar 

  39. Ozáez, I., Martínez-Guitarte, J.L., Morcillo, G., 2014. The UV filter benzophenone 3 (BP-3) activates hormonal genes mimicking the action of ecdysone and alters embryo development in the insect Chironomus riparius (Diptera). Environ. Pollut. 192, 19–26.

    PubMed  Google Scholar 

  40. Pratt, G.E., Jennings, R.C., Hamnett, A.F., Brooks, G.T., 1980. Lethal metabolism of precocene-I to a reactive epoxide by locust corpora allata. Nature 284, 320–323.

    CAS  Google Scholar 

  41. Phillips, D.R., Rasbery, J.M., Bartel, B., Matsuda, S.P., 2006. Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol. 9, 305–314.

    CAS  PubMed  Google Scholar 

  42. Ranganatha, V.L., Begum, A.B., Prashanth, T., Gurupadaswamy, H.D., Madhu, S.K., Shivakumar, S., Khanum, S.A., 2013. Synthesis and larvicidal properties of benzophenone comprise indole analogues against Culex quinquefasciatus. Drug Invent. Today 5, 275–280.

    Google Scholar 

  43. Redfern, R.E., Kelly, T.J., Borkovees, A.B., Hayes, D.K., 1982. Ecdysteroid titers and moulting aberration in last stage Oncopeltus nymphs, treated with IGR’s pesticides. Biochem. Physiol. 118, 351–356.

    Google Scholar 

  44. R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/.

    Google Scholar 

  45. Rothman, K.J., 1990. No adjustments are needed for multiple comparisons. Epidemiology 1, 43–44.

    CAS  PubMed  Google Scholar 

  46. Shin, Y., Tamai, Y., Terazawa, M., 2000. Chemical constituents of Inonotus obliquus I.: a newtriterpene, 3β-hydroxy-8,24-dien-lanosta-21,23-lactone from sclerotium. Eur. J. For. Res. 1, 43–50.

    CAS  Google Scholar 

  47. Silva, M.C.A., Heringer, A.P., Figueiredo, M.R., Paiva, S.R., 2012. Separation of clusianone from Clusia fluminensis Planch. and Triana (Clusiaceae) by high speed counter-current chromatography (HSCCC). J. Liq. Chrom. Rel. Technol. 35, 2313–2321.

    Google Scholar 

  48. Staal, G.B., 1986. Anti juvenile hormone agents. Ann. Rev. Entomol. 31, 391–429.

    CAS  Google Scholar 

  49. Stoate, C., Báldi, A., Beja, P., Boatman, N.D., Herzon, I., van Doorn, A., de Snoo, G.R., Rakosy, L., Ramwell, C., 2009. Ecological impacts of early 21st century agricultural change in Europe - a review. J. Environ. Manage. 91, 22–46.

    CAS  PubMed  Google Scholar 

  50. Suissa, S., Shuster, J.J., 1985. Exact unconditional sample sizes forthe 2×2 binomial trial. J. R. Stat. Soc. Ser. A 148, 317–327.

    Google Scholar 

  51. Suzuki, M., Xiang, T., Ohyama, K., Seki, H., Saito, K., Muranaka, T., Hayashi, H., Katsube, Y., Kushiro, T., Shibuya, M., Ebizuka, Y., 2006. Lanosterol synthase in dicotyledonous plants. Plant Cell Physiol. 47, 565–571.

    CAS  PubMed  Google Scholar 

  52. Tietbohl, L.A.C., Barbosa, T., Fernandes, C.P., Santos, M.G., Machado, F.P., Santos, K.T., Mello, C.B., Araújo, H.B., Gonzalez, M.S., Feder, D., Rocha, L., 2014. Laboratory evaluation of the effects of essential oil of Myrciaria floribunda leaves on the development of Dysdercus peruvianus and Oncopeltus fasciatus. Rev. Bras. Farmacogn. 24, 316–321.

    CAS  Google Scholar 

  53. Unnithan, G.C., Nair, K.K., Bowers, W.S., 1977. Precocene-induced degeneration of the corpus allatum of adult females of the bug Oncopeltus fasciatus. J. Insect. Physiol. 23, 1081–1094.

    Google Scholar 

  54. Weiss, B., Amler, S., Amler, R.W., 2004. Pesticides. In: Keith, O.Y. (Ed.), Pediatric Neuropsychology. Guilford press, New York, pp. 1030–1036.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Denise Feder.

Additional information

Authors contributions

MCA, MRF, MACK, SRP prepared extracts, isolated substances and analyzed chemical data from the plant material. MGS collected the plant material and identified the plant. RCD, MSG, DF, CBM, NAR conceived, designed research and analyzed data of insect bioassays. MCA, RCD, DF, NAR and CBM wrote the manuscript. RCD, BPS, JPFP, MCA conducted insect bioassays. All authors read and approved the manuscript.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duprat, R.C., Anholeti, M.C., de Sousa, B.P. et al. Laboratory evaluation of Clusia fluminensis extracts and their isolated compounds against Dysdercus peruvianus and Oncopeltus fasciatus. Rev. Bras. Farmacogn. 27, 59–66 (2017). https://doi.org/10.1016/j.bjp.2016.08.004

Download citation

Keywords

  • Clusianone
  • Lanosterol
  • Oncopeltus fasciatus
  • Dysdercus peruvianus
  • Developmental inhibition
  • Mortality