Spectroscopic synthetic optimizations monitoring of silver nanoparticles formation from Megaphrynium macrostachyum leaf extract

Abstract

Nanobiotechnology is one of the most promising areas in modern nanoscience and technology. Metallic nanoparticles have found uses in many applications in different fields, such as catalysis, photonics, electronics, medicine and agriculture. Synthesized nanoparticles through chemical and physical methods are expensive and have low biocompatibility. In the present study, silver nanoparticles have been synthesized from Megaphrynium macrostachyum (Benth. & Hook. f.) Milne-Redh., Marantaceae, leaf extract. Megaphrynium macrostachyum is a plant with large leaves found in the rainforest of West and Central Africa. Synthetic optimizations following factors such as incubation time, temperature, pH, extract and silver ion concentration during silver formation are discussed. UV-visible spectra gave surface plasmon resonance for synthesized silver nanoparticles based Megaphrynium macrostachyum peaks at 400–450 nm. X-ray diffraction revealed the average size of pure crystallites composed from Ag and AgCl.

References

  1. Ajayi, I.A., Ojelere, O.O., 2013. Phytochemical screening, proximate analysis and antimicrobial activity of aqueous extract of Megaphrynium macrostachyum seeds. Int. J. Eng. Res. Technol. 2, 2123–2131.

    Google Scholar 

  2. Ali, D.M., Thajuddin, N., Jeganathan, K., Gunasekaran, M., 2011. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf. B 85, 360–365.

    Article  Google Scholar 

  3. Awwad, A.M., Salem, N.M., Abdeen, A.O., 2013. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Ind. Chem. 4, 1–6.

    Article  Google Scholar 

  4. Awwad, A.M., Salem, N.M., Ibrahim, Q.M., Abdeen, A.O., 2015. Phytochemical fabrication and characterization of silver/silver chloride nanoparticles using Albizia julibrissin flowers extract. Adv. Matter Lett. 6, 726–730.

    CAS  Article  Google Scholar 

  5. Bamford, C.R., 1977. Colour Generation and Control in Glass. Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  6. Dubey, M., Bhadauria, S., Kushwah, B.S., 2009. Grenn synthesis of nanosilver particles from extract of Eucalyptus hybrid (Safeda) leaf. Dig. J. Nanomater. Biostruct. 4, 537–543.

    Google Scholar 

  7. El-Sayed, M.A., 2001. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts Chem. Res. 34, 257–264.

    CAS  Article  Google Scholar 

  8. Eya’ane Meva, F., Segnou, M.L., Okalla Ebongue, C., Ntoumba, A.A., Djiopang Yadou, S., Essombe Malolo, F.A., Lidwine Ngah, L., Harouna Massai, Emmanuel Mpondo Mpondo, E., 2016. Unexplored vegetal green synthesis of silver nanoparticles: a preliminary study with Corchorus olitorus Linn and Ipomea batatas (L.) Lam. Afr. J. Biotechnol. 15, 341–349.

    Article  Google Scholar 

  9. Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H., Jose- Yacaman, M., 2003. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19, 1357–1361.

    CAS  Article  Google Scholar 

  10. Gebru, H., Taddesse, A., Kaushal, J., Yadav, O.P., 2013. Green synthesis of silver nanoparticles and their antibacterial activity. J. Surf. Sci. Technol. 29, 47–66.

    CAS  Google Scholar 

  11. Gregory, M., Selvakesavan, R.K., Franklin, G., Sarmento, B., Dias, A.C.P., 2014. Green synthesis of silver nanoparticles using Withania somnifera extract and their incorporation into a cream with antibacterial activity. Planta Med. 80, SL26.

    Google Scholar 

  12. Huang, C.C., Yang, Z., Lee, K.H., Chang, H.T., 2007. Synthesis of highly fluorescent gold nanoparticles for sensing mercury (II). Angew. Chem. Int. Ed. 46, 6824–6828.

    CAS  Article  Google Scholar 

  13. Iravani, S., Zolfaghari, B., 2013. Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Res. Int., https://doi.org/10.1155/2013/639725.

    Google Scholar 

  14. Jennings, S.B., Brown, N.D., Boshier, D.H., Whitmore, T.C., Lopes, J.A., 2001. Ecology provides a pragmatic solution to the maintenance of genetic diversity in sustainably managed tropical rainforest. Forest Ecol. Manage. 154, 1–10.

    Article  Google Scholar 

  15. Khalil, M.M.H., Ismail, E.H., El-Baghdady, K.Z., Mohamed, D., 2013. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem. 7, 1131–1139.

    Article  Google Scholar 

  16. Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T., Mohan, N., 2010. Synthesis of silver nanoparticles using Acalyptica indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B 76, 50–56.

    CAS  Article  Google Scholar 

  17. Leela, A., Vivekanandan, M., 2008. Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr. J. Biotechnol. 7, 3162–3165.

    Google Scholar 

  18. Maloueki, U., Musuyu, M., Mbomba, N.B.A., Ndimbo, K.S.P., Kapetshi, K.J., Kabena, N.O., 2013. Activités antimicrobiennes et antioxydantes des extraits aqueux totaux des feuilles de Megaphrynium macrostachyum (Benth.) Milne-Redh. (Marantaceae) et de Palisota hirsute (Thunb.) K. Schum. (Commelinaceae). Congo Sci. 1, 38–48.

    Google Scholar 

  19. Masarovicová, E., Králóvá, K., Zinjarde, S.S., 2014. Metal nanoparticles in plants, formation and action. Handbook of Plant and Crop Physiology, vol. 33., 3rd ed. CRC Press, Taylor & Francis Group, pp. 684–719.

    Google Scholar 

  20. Mie, G., 1908. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 345–377.

    Article  Google Scholar 

  21. Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A., Schultz, S., 2002. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755–6759.

    CAS  Article  Google Scholar 

  22. Mulvaney, P., 1996. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788–800.

    CAS  Article  Google Scholar 

  23. Pérez-Arantegui, J., Molera, J., Larrea, A., Pradell, T., Vendrell-Saz, M., Borgia, I., Brunetti, B.G., Cariati, F., Fermo, P., Mellini, M., 2001. Luster pottery from the thirteenth century to the sixteenth century: a nanostructured thin metallic film. J. Am. Ceram. Soc. 84, 442–446.

    Article  Google Scholar 

  24. Park, Y., 2014. New paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plants extracts. Toxicol. Res. 30, 169–178.

    CAS  Article  PubMed Central  Google Scholar 

  25. Prathna, T.C., Chandrasekaran, N., Raichur, M.A., Mukherjee, A., 2011. Biomimetic synthesis of silver nanoparticles by citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B 82, 152–159.

    CAS  Article  Google Scholar 

  26. Rai, M., Yadav, A., Gade, A., 2008. Current trends in phytosynthesis of metal nanoparticles. Crit. Rev. Biotechnol. 28, 277–284.

    CAS  Article  PubMed Central  Google Scholar 

  27. Rai, M., Yadav, A., Gade, A., 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83.

    CAS  Article  Google Scholar 

  28. Rajesh, R.W., Lakkakula, J.R., Niranjan, K.S., Mendhulkar, V.D., Sahebrao, K.B., 2009. Phytosynthesis of silver nanoparticles using Glicirida sepium (Jacq). Curr. Nanosci. 5, 117–122.

    Article  Google Scholar 

  29. Rajesh, P., Swati, W., Sandesh, M., Sangita, J., Kulkarni, S., 2013. Green synthesis of silver nanoparticles by Withania somnifera and evaluation of its antimicrobial potential. J. Empir. Biol. 1, 38–48.

    Google Scholar 

  30. Thakkar, K.N., Mhatre, S.S., Parikh, R.Y., 2010. Biological synthesis of metallic nanoparticles. Nanomedicine-UK 6, 257–262.

    CAS  Article  Google Scholar 

  31. Thombre, R., Parekh, F., Lekshminarayanan, P., Francis, G., 2012. Studies on antibacterial and antifungal activity of silver nanoparticles synthesized using Artocarpus heterophyllus leaf extract. Biotechnol. Bioinf. Bioeng. 2, 632–637.

    Google Scholar 

  32. Vadlapudi, V., Kaladhar, D.S.V.G.K., 2014. Review: green synthesis of silver and gold nanoparticles. Middle East J. Sci. Res. 19, 834–842.

    Google Scholar 

  33. Wang, P., Huang, B., Lou, Z., Zhang, X., Qin, X., Dai, Y., Zheng, Z., Wang, X., 2010. Synthesis of highly efficient Ag@AgCl plasmonic photocatalyst with various structures. Chem. Eur. J. 16, 538–544.

    CAS  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to François Eya’ane Meva.

Additional information

Authors’ contributions

SML, AAN, and PBEK contributed in collecting plant sample and identification, confection of herbarium, running part of the laboratory work. EMF and EMM carry analysis of the data, run laboratory work, provide chemicals and drafted the paper. All authors contributed to discuss the spectroscopy and powder diffraction. EMF and EMM designed the study, supervised the laboratory work and contributed to critical reading of the manuscript. All the authors have read the final manuscript and approved the submission.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meva, F.E., Segnou, M.L., Ebongue, C.O. et al. Spectroscopic synthetic optimizations monitoring of silver nanoparticles formation from Megaphrynium macrostachyum leaf extract. Rev. Bras. Farmacogn. 26, 640–646 (2016). https://doi.org/10.1016/j.bjp.2016.06.002

Download citation

Keywords

  • Silver
  • Nanoparticles
  • Megaphrynium macrostachyum
  • UV-visible spectroscopy