Schinus terebinthifolius administration prevented behavioral and biochemical alterations in a rotenone model of Parkinson’s disease

Abstract

Parkinson’s disease is a neurodegenerative disorder characterized by motor impairment, cognitive decline and psychiatric symptoms. Schinus terebinthifolius Raddi, Anacardiaceae, had been studied for its anti-inflammatory and antioxidant properties, and in this study, the stem bark was evaluated for the neuroprotective effects on behavioral and biochemical alterations induced by administrations of rotenone in rats. Behavioral evaluations were performed using open-field and rotarod. The in vitro and in vivo antioxidant activities were determined by the DPPH radical scavenging activity and lipid peroxidation method respectively. The administration of rotenone (3 mg/kg, s.c.) produced hypolocomotion, increase of immobility and muscle incoordination, while the treatment with S. terebinthifolius stem bark extract (150, 300 and 600 mg/kgp.o.) for seven days prevented rotenone-induced dysfunctional behavior. Biochemical analysis of the substantia nigra, striatum and cortex revealed that rotenone administration significantly increased lipid peroxidation, which was inhibited by treatment with all doses of S. terebinthifolius. The results suggested neuroprotective effect of S. terebinthifolius possibly mediated through its antioxidant activity, indicating a potential therapeutic benefit of this species in the treatment of Parkinson’s disease.

References

  1. Abd El Mohsen, M.M., Kuhnle, G., Rechner, A.R., Schroeter, H., Rose, S., Jenner, P., Rice-Evans, CA., 2002. Uptake and metabolism of epitatechin and its access to the brain after oral ingestion. Free Radic. Biol. Med. 33, 1693–1702.

    CAS  Article  PubMed  Google Scholar 

  2. Abdou, R.H., Saleh, S.Y., Khalil, W.F., 2015. Toxicological and biochemical studies on Schinus terebinthifolius concerning its curative and hepatoprotective effects against carbon tetrachloride-induced liver injury. Pharmacogn. Mag. 11, S93–S101.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bernardi, M.M., Palermo-Neto, J., 1979. Effects of abrupt and gradual withdrawal from long-term haloperidol treatment on open held behavior of rats. Psy-chopharmacology 65, 247–250.

    CAS  Google Scholar 

  4. Betarbet, R., Sherer, T.B., Mackenzie, G., Garcia-Osuma, M., Panov, A.V., Greenamyre, J.T., 2000. Chronic systemic pesticide exposure reproduces features of Parkin-son’s disease. Nat. Neurosci. 3, 1301–1306.

    CAS  Article  PubMed  Google Scholar 

  5. Blesa, J., Phani, S., Jackson-Lewis, V., Przedborski, S., 2012. Classic and new animal models of Parkinson’s disease. J. Biomed. Biotechnol. 2012 (ID), 845618.

    Google Scholar 

  6. Brand-Williams, W., Cuvelier, M.E., Berset, C., 1995. Use of free radical method to evaluate antioxidant activity. Lebensm-Wiss. U. Technol. 28, 25–30.

    CAS  Article  Google Scholar 

  7. Broadhurst, P.L., 1957. Determination of emotionality in the rat. I. Situational factors. Br.J. Psychol. 48, 1–12.

    CAS  Article  PubMed  Google Scholar 

  8. Buege, J.A, Aust, S.D., 1978. Microssomal lipid peroxidation. Methods Enzymol. 52, 302–310.

    CAS  Article  Google Scholar 

  9. Chen, M., Wang, T., Yue, F., Li, X., Wang, P., Li, Y., Chan, P., Yu, S., 2015. Tea polyphe-nols alleviate motor impairments, dopaminergic neuronal injury, and cerebral oi-synuclein aggregation in MPTP-intoxicated Parkinsonian monkeys. Neuro-science 286, 383–392.

    CAS  Google Scholar 

  10. Correa, M.P., 1974. Dicionärio de plantas üteis do Brasil e das plantas exóticas culti-vadas, vol. 3. Imprensa Nacional, Rio de Janeiro, Brazil, pp. 125–126.

    Google Scholar 

  11. Costa, C.O.D.S., Ribeiro, P.R., Loureiro, M.B., Simoes, R.C., Castro, R.D., Fernandez, L.G., 2015. Phytochemical screening, antioxidant and antibacterial activities of extracts prepared from different tissues of Schinus terebinthifolius Raddi that occurs in the coast of Bahia, Brazil. Phcog. Mag. 11, 607–614.

    CAS  Article  Google Scholar 

  12. Dauer, W., Przedborski, S., 2003. Parkinson’s disease: mechanisms and models. Neuron 39, 889–909.

    CAS  Article  PubMed  Google Scholar 

  13. Dutta, D., Mohanakumar, K.P., 2015. Tea and Parkinson’s disease: constituents of tea synergize with antiparkinsonian drugs to provide better therapeutic benefits. Neurochem. Int. 89, 181–190.

    CAS  Article  PubMed  Google Scholar 

  14. Fernandez, H.H., 2015. Update on Parkinson disease. Clev. Clin. J. Med. 82, 563–568.

    Article  Google Scholar 

  15. Gao, X.I, Cassidy, A., Schwarzschild, M.A., Rimm, E.B., Ascherio, A., 2012. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology 78, 1138–1145.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Hidgon, J.V., Frei, B., 2003. Tea catechins and polyphenols: health effects, metabolism and antioxidant functions. Crit. Rev. Food Sci. Nutr. 43, 89–143.

    Article  Google Scholar 

  17. Khan, N., Mukhtar, H., 2007. Tea polyphenols for health promotion. Life Sci. 81, 519–533.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Kim, Y.J., 2007. Antimelanogenic and antioxidant properties of gallic acid. Biol. Pharm. Bull. 30, 1052–1055.

    CAS  Article  PubMed  Google Scholar 

  19. Linard-Medeiros, C.F.B., Sales, V.A.W., Ramos, A.C., Sereniki, A., Trevisan, M.T.S., Wanderley, A.G., Lafayette, S.S., 2015. Neuroprotective effect of extract ofAnacardium occidentale Linn on a rotenone model of Parkinson’s disease. Int. J. Pharm. Sci. Res. 6, 123–129.

    Google Scholar 

  20. Mandel, S., Amit, T., Reznichenko, L., Weinreb, O., Youdim, M.B., 2006. Green teacate-chins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol. Nutr. Food Res. 50, 229–234.

    CAS  Article  PubMed  Google Scholar 

  21. Medeiros, K.C.P., Monteiro, J.C., Diniz, M.F.F.M., Medeiros, I.A., Silva, B.A., Piuvezam, M.R., 2007. Effect of the activity of the Brazilian polyherbal formulation: Euca-lyptus globulus Labili, Peitodon radicans Pohl and Schinus terebinthifolius Raddi in inflammatory models. Rev. Bras. Farmacogn. 7, 23–28.

    Article  Google Scholar 

  22. Monville, C., Torres, E.M., Dunnett, S.B., 2006. Comparison of incremental and accel-erating protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA model. J. Neurosci. Methods 158, 219–223.

    Article  PubMed  Google Scholar 

  23. Morton, J.F., 1978. Brazilian pepper: its impact on people, animals and the environ-ment. Econ. Bot. 32, 353–359.

    CAS  Article  Google Scholar 

  24. Renaud, J., Nabavi, S.F., Daglia, M., Nabavi, S.M., Mattinoli, M.G., 2015. Epigallocatechin-3-gallate, a promising molecule for Parkinson’s disease? Rejuvenation Res. 18, 257–269.

    CAS  Article  PubMed  Google Scholar 

  25. Sanders, L.H., Greenamyre, J.T., 2013. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic. Biol. Med. 62, 111–120.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Senthil, K., 2008. Repletion of antioxidant status by EGCG and retardation of oxidative damage induced macromolecular anomalies in aged rats. Exp. Gerontol. 43, 143–183.

    Google Scholar 

  27. Sherer, T.B., Kim, J.H., Betarbet, R., Greenamyre, J.T., 2003. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp. Neurol. 179, 9–16.

    CAS  Article  PubMed  Google Scholar 

  28. Singh, R.P., Sharad, S., Kapur, S., 2004. Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. J. Indian Acad. Clin. Med. 5, 218–225.

    Google Scholar 

  29. Solanki, I., Parihar, P., Mansuri, M.X., Parihar, M.S., 2015. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv. Nutr. 6, 64–72.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Srividhya, R., Zarkovic, K., Stroser, M., Waeg, G., Zarkovic, N., Kalaiselvi, P., 2009. Mitochondrial alterations in aging rat brain: effective role of (-)-epigallo catechin gallate. Int. J. Dev. Neurosci. 27, 223–231.

    CAS  Article  PubMed  Google Scholar 

  31. Virmani, A., Pinto, L., Binienda, Z., Ali, S., 2013. Food, nutrigenomics, and neurodegeneration-neuroprotection by what you eat! Mol. Neurobiol. 48, 353–362.

    CAS  Google Scholar 

  32. von Wrangel, C., Schwabe, K., John, N., Krauss, J.K., Alam, M., 2015. The rotenone-induced rat model of Parkinson’s disease: behavioral and electrophysiological findings. Behav. Brain Res. 279, 52–61.

    CAS  Article  Google Scholar 

  33. Weinreb, O., Mandel, S., Amit, T., Youdim, M.B., 2004. Neurological mechanisms of green tea catechin polyphenols in Alzheimer’s and Parkinson’s diseases. J. Nutr. Biochem. 15, 506–516.

    CAS  Article  PubMed  Google Scholar 

  34. Zaitone, S.A., Abo-Elmatty, D.M., Shaalan, A.A., 2012. Acetyl-L-carnitine and α-lipoic acid affect rotenone-induced damage in nigral dopaminergic neurons of rat brain: implication for Parkinson’s disease therapy. Pharmacol. Biochem. Behav. 100, 347–360.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES for financial support. The authors also would like to dedicate this paper to Simone Sette Lopes Lafayette.

Author information

Affiliations

Authors

Contributions

AS, SNS, and JRS contributed in running the laboratory work, analysis of the data and drafted the paper. TJSPS and LDSA contributed in the chemicals analysis. CFBLM and JBRS contributed in the biochemical analysis. SSS, SSLL and AGW designed the study, supervised the laboratory work and contributed to the critical reading of the manuscript. All the authors have read the final manuscript and approved the submission

Corresponding author

Correspondence to Almir G. Wanderley.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serenilo, A., Linard-Medeiros, C.F.B., Silva, S.N. et al. Schinus terebinthifolius administration prevented behavioral and biochemical alterations in a rotenone model of Parkinson’s disease. Revista Brasileira de Farmacognosia 26, 240–245 (2016). https://doi.org/10.1016/j.bjp.2015.11.005

Download citation

Keyword

  • Antioxidant effects
  • Lipidic peroxidation
  • Parkinson’s disease
  • Rotenone
  • Schinus terebinthifolius