Evaluation of acetylcholinesterase inhibitory activity of Brazilian red macroalgae organic extracts

Abstract

Alzheimer’s disease affects nearly 36.5 million people worldwide, and acetylcholinesterase inhibition is currently considered the main therapeutic strategy against it. Seaweed biodiversity in Brazil represents one of the most important sources of biologically active compounds for applications in phytotherapy. Accordingly, this study aimed to carry out a quantitative and qualitative assessment of Hypnea musciformis (Wulfen) J.V. Lamouroux, Ochtodes secundiramea (Montagne) MA. Howe, and Pterocladiella capillacea (S.G. Gmelin) Santelices & Hommersand (Rhodophyta) in order to determine the AChE effects from their extracts. As a matter of fact, the O. secundiramea extract showed 48% acetylcholinesterase inhibition at 400 (ig/ml. The chemical composition of the bioactive fraction was determined by gas chromatography-mass spectrometry (GC-MS); this fraction is solely composed of halogenated monoterpenes, therefore allowing assignment of acetylcholinesterase inhibition activity to them.

References

  1. Alzheimer’s Association, 2014. Alzheimer’s disease facts and figures. Alzheimer’s Dement. 10, 1–80.

    Google Scholar 

  2. Amsler, C.D., 2008. Algal Chemical Ecology. Springer, Berlin.

    Google Scholar 

  3. Barahona, L.F., Rorrer, G.L., 2003. Isolation of halogenated monoterpenes from bioreactor-cultured microplantlets of the macrophytic red algae Ochtodes secundiramea and Portieria hornemannii. J. Nat. Prod. 66, 743–751.

    CAS  PubMed  Google Scholar 

  4. Barbosa-Filho, J.M., Medeiros, K.C.P., Diniz, M.F., Batista, L.M., Athayde-Filho, P.F., Silva, M.S., Cunha, E.V.L., Almeida, J.R.G.S., Quintans-Júnior, L.J., 2006. Natural products inhibitors of the enzyme acetylcholinesterase. Rev. Bras. Farmacogn. 16, 258–285.

    CAS  Google Scholar 

  5. Baweja, P., Sahoo, D., García-Jiménez, P., Robaina, P.R., 2009. Seaweed tissue culture as applied to biotechnology: problems, achievements and prospects. Phycol. Res. 57, 45–58.

    Google Scholar 

  6. Burreson, B.J., Woolard, F.X., Moore, R.M., 1975. Evidence forthe biogenesis of halogenated myrcenes from the red alga Chondrococcus hornemanii. Chem. Lett. 4, 1111–1114.

    Google Scholar 

  7. Cardozo, K.H.M., Carvalho, V.M., Ernani Pinto, E., Colepicolo, P., 2006. Fragmentation of mycosporine-like amino acids by hydrogen/deuterium exchange and electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 20, 253–258.

    CAS  PubMed  Google Scholar 

  8. Coll, J.C., Wright, A.D., 1987. Tropical marine algae. I. New halogenated monoterpenes from Chondrococcushornemannii(Rhodophyta, Gigartinales, Rhizophyllidaceae). Aust.J. Chem. 40, 1893–1900.

    CAS  Google Scholar 

  9. Coll, J.C., Skelton, B.W., White, A.H., Wright, A.D., 1988. Tropical marine algae. II. The structure determination of new halogenated monoterpenes from Plocamium hamatum (Rhodophyta, Gigartinales, Plocamiaceae). Aust.J. Chem. 41, 1743–1753.

    CAS  Google Scholar 

  10. Dagani, M.J., Barda, H.J., Benya, T.J., Sanders, D.C., 2014. Organic bromine compounds. In: Ullmann’s Fine Chemicals. Wiley-VCH Verlag GmbH & Co, Weinhein, Germany.

    Google Scholar 

  11. Ellman, G.L., Courtney, K.D., Andres Jr., V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95.

    CAS  Google Scholar 

  12. Hillwig, M.L., Liu, X., 2014. A new family of iron-dependent halogenases acts on freestanding substrates. Nat. Chem. Biol. 10, 921–923.

    CAS  PubMed  Google Scholar 

  13. Ferreira, L.D.S., Turatti, I.C.C., Lopes, N.P., Guaratini, T., Colepicolo, P., Oliveira, E.C., Garla, R.C., Pohlit, A.M., Zucchi, O.L.A.D., 2012. Apolar compounds in seaweeds from Fernando de Noronha archipelago (Northeastern Coast of Brazil). Int. J. Anal. Chem., https://doi.org/10.1155/2012/431954.

    Google Scholar 

  14. Gerwick, W.H., 1984. 2-Chloro-1, 6 (S*), 8-tribromo-3-(8) (Z)-ochtodene: a metabolite of the tropical red seaweed Ochtodes secundiramea. Phytochemistry 23, 1323–1324.

    CAS  Google Scholar 

  15. Gressler, V., Colepicolo, P., Pinto, E., 2009. Useful strategies for algal volatile analysis. Curr. Anal. Chem. 5, 271–292.

    CAS  Google Scholar 

  16. Gressler, V., Fujii, M., Martins, A.P., Colepicolo, P., Mancini, J., Pinto, E., 2011a. Biochemical composition of two red seaweed species grown on the Brazilian coast. J. Sci. Food Agric. 91, 1687–1692.

    CAS  PubMed  Google Scholar 

  17. Gressler, V., Stein, E.M., Dörr, F., Fujii, M.T., Colepicolo, P., Pinto, E., 2011b. Sesquiterpenes from the essential oil of Laurencia dendroidea (Ceramiales, Rhodophyta): isolation, biological activities and distribution among seaweeds. Rev. Bras. Farmacogn. 21, 248–254.

    CAS  Google Scholar 

  18. Kartal, M., Orhan, I., Abu-Asaker, M., Senol, F.S., Atici, T., Sener, B., 2009. Antioxidant and anticholinesterase assets and liquid chromatography-mass spectrometry preface of various fresh-water and marine macroalgae. Pharmacogn. Mag. 5, 291–297.

    Google Scholar 

  19. Keane, S., Ryan, M.F., 1999. Purification, characterisation, and inhibition by monoterpenes of acetylcholinesterase from the waxmoth, Galleria mellonella (L.). Insect Biochem. Mol. Biol. 29, 1097–1104.

    CAS  Google Scholar 

  20. Koroch, A.R., Juliani, H.R., Zygadlo, J.A., 2007. Bioactivity of essential oils and their components. Flav. Fragr. Chem. 87, 547–553.

    Google Scholar 

  21. Machado, L.P., Carvalho, L.R., Young, M.C.M., Zambotti-Villela, L., Colepicolo, P., Andreguetti, D.X., Yokoya, N.S., 2014a. Comparative chemical analysis and antifungal activity of Ochtodes secundiramea (Rhodophyta) extracts obtained using different biomass processing methods. J. Appl. Phycol. 26, 2029–2035.

    Google Scholar 

  22. Machado, L.P., Matsumoto, S.T., Jamal, C.M., Silva, M.B., Centeno, D.C., Colepicolo, P., Carvalho, L.R., Yokoya, N.S., 2014b. Chemical analysis and toxicity of seaweed extracts with inhibitory activity against tropical fruit anthracnose fungi. J. Sci. Food. Agric. 94, 1739–1744.

    CAS  PubMed  Google Scholar 

  23. Maliakal, S., Cheney, C., Rorrer, G., 2001. Halogenated monoterpene production in regenerated plantlet cultures ofOchtodessecundiramea (Rhodophyta, Cryptonemiales). J. Phycol. 37, 1010–1019.

    CAS  Google Scholar 

  24. Marston, A., Kissling, J., Hostettmann, K., 2002. A rapid TLC bioautographic method forthe detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem. Analysis 13, 51–54.

    CAS  Google Scholar 

  25. McConnell, O.J., Fenical, W., 1978. Ochtodene andochtodiol: novel polyhalogenated cyclic monoterpenes from the red seaweed Ochtodes secundiramea. J. Org. Chem. 43, 4238–4241.

    CAS  Google Scholar 

  26. McGleenon, B.M., Dynan, K.B., Passmore, A.P., 1999. Acetylcholinesterase inhibitors in Alzheimer’s disease. Br. J. Clin. Pharmacol. 48, 471–480.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mesko, M.F., Picoloto, R.S., Ferreira, L.R., Costa, V.C., Pereira, C.M.P., Colepicolo, P., Muller, E.I., Flores, E.M.M., 2015. Ultraviolet radiation combined with microwave-assisted wet digestion of Antarctic seaweeds for further determination of toxic elements by ICP-MS. J. Anal. At. Spectrom. 30, 260–266.

    CAS  Google Scholar 

  28. Moore, B.S., 2006. Biosynthesis of marine natural products: macroorganisms (Part B). Nat. Prod. Rep. 23, 615–629.

    CAS  PubMed  Google Scholar 

  29. Nair, V.P., Hunter, J.M., 2004. Anticholinesterases and anticholinergic drugs. Cont. Edu. Anaest. Crit. Care. Pain 4, 164–168.

    Google Scholar 

  30. Natarajan, S., Shanmugiahthevar, K.P., Kasi, P.D., 2009. Cholinesterase inhibitors from Sargassum and Gracilariagracilis: seaweeds inhabiting South Indian coastal areas (Hare Island, Gulf of Mannar). Nat. Prod. Res. 23, 355–369.

    CAS  PubMed  Google Scholar 

  31. Naylor, S., Hanke, F.J., Manes, L.V., Crews, P., 1983. Chemical and biological aspects of marine monoterpenes. Fortschritte der Chemie Organischer Naturstoffe/Prog. Chem. Org. Nat. Prod. 44, 189–241.

    CAS  Google Scholar 

  32. Pangestuti, R., Kim, S.K., 2011. Neuroprotective effects of marine algae. Mar. Drugs 9, 803–818.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Paul, V.J., McConnell, O.J., Fenical, W., 1980. Cyclic monoterpenoid feeding deterrents from the red marine alga Ochtodes crockeri. J. Org. Chem. 45, 3401–3407.

    CAS  Google Scholar 

  34. Polzin, J.P., Rorrer, G.L., 2003. Halogenated monoterpene production by microplantlets of the marine red alga Ochtodes secundiramea within an airlift photobioreactor under nutrient medium perfusion. Biotechnol. Bioeng. 82, 415–428.

    CAS  PubMed  Google Scholar 

  35. Polzin, J.J., Rorrer, G.L., Cheney, D.P., 2003. Metabolic flux analysis of halogenated monoterpene biosynthesis in microplantlets of the macrophytic red alga Ochtodes secundiramea. Biomol. Eng. 20, 205–215.

    CAS  PubMed  Google Scholar 

  36. Rhee, I.K., Meent, M.V., Ingkaninan, K., Verpoorte, R., Okada, M., Marimo, M., 1997. Studies on inhibitory activity against acetyl cholinesterase of new bisbenzylisoquinoline alkaloid and its related compounds. Heterocycles 45, 2253–2260.

    Google Scholar 

  37. Rhee, I.K., Meent, M.V., Ingkaninan, K., Verpoorte, R., 2001. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using sílica gel thin-layer chromatography in combination with bioactivity staining. J. Chromatogr. A 915, 217–223.

    CAS  PubMed  Google Scholar 

  38. Smit, A.J., 2004. Medicinal and pharmaceutical uses of seaweed natural products: a review. J. Appl. Phycol. 16, 245–262.

    CAS  Google Scholar 

  39. Stirk, W., Reinecke, D., van Staden, J., 2007. Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African seaweeds. J. Appl. Phycol. 19, 271–276.

    CAS  Google Scholar 

  40. Suganthy, N., Pandian, S.K., Devi, K.P., 2010. Neuroprotective effect of seaweeds inhabiting South Indian coastal area (Hare Island, Gulf of Mannar marine biosphere reserve): cholinesterase inhibitory effect of Hypnea valentiae and Ulva reticulata. Neurosci. Lett. 468, 216–219.

    CAS  PubMed  Google Scholar 

  41. Torres, F.A.E., Passalacqua, T.G., Velasquez, A.M.A., Souza, R.A., Colepicolo, P., Graminha, M.A.S., 2014. New drugs with antiprotozoal activity from marine algae: a review. Rev. Bras. Farmacogn. 24, 265–276.

    CAS  Google Scholar 

  42. Vinutha, B., Prashanth, D., Salma, K., Sreeja, S.L., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K., Deepak, M., 2007. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 109, 359–363.

    CAS  PubMed  Google Scholar 

  43. Wimoa, A., Winblada, B., Jönssonb, L., Bond, J., Princee, M., Winblad, B., 2013. The worldwide economic impact of dementia 2010. Alzheimer’s Dement. 9, 1–11.

    Google Scholar 

  44. Wimoa, A., Winblada, B., Jönssonb, L., 2007. An estimate of the total worldwide societal costs of dementia in 2005. Alzheimer’s Dement. 3, 81–91.

    Google Scholar 

  45. Yokoya, N.S., Yoneshigue-Valentin, Y., 2011. Micropropagation as a tool for sustainable utilization and conservation of populations of Rhodophyta. Rev. Bras. Farmacogn. 21, 334–339.

    Google Scholar 

  46. Yoon, N., Chung, H., Kim, H., Choi, J., 2008. Acetyl and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish. Sci. 74, 200–207.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank financial supports from CNPq and FAPESP, scholarship from CAPES to the first author, and grants from CNPq to MCMY, PC, and NSY. This study is part of thesis presented by the first author to the Graduate Programme in Plant Biodiversity and Environment, Institute of Botany, São Paulo, Brazil. The authors would also like to thank Prof. O. Vieira for proof-reading and editing the manuscript in English.

Author information

Affiliations

Authors

Contributions

LPM collected and identified seaweed samples, as well ascarried out lab experiments, analyzed the data, and wrote the manuscript. LRC performed chemical and chromatographic analyses and provided critical reading of the manuscript. MCMY and EMCL performed laboratory experiments involving biological studies. DCC and LZV carried out chemical studies. PC and NSY designed the study, supervised the laboratory work and contributed to critical reading of the manuscript. All authors have read the final manuscript and approved the submission.

Corresponding author

Correspondence to Nair S. Yokoya.

Ethics declarations

Authors have no conflicts of interest to declare.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Machado, L.P., Carvalho, L.R., Young, M.C.M. et al. Evaluation of acetylcholinesterase inhibitory activity of Brazilian red macroalgae organic extracts. Rev. Bras. Farmacogn. 25, 657–662 (2015). https://doi.org/10.1016/j.bjp.2015.09.003

Download citation

Keywords

  • Acetylcholinesterase inhibition
  • Halogenated monoterpenes
  • Hypnea
  • Ochtodes
  • Pterocladiella
  • Rhodophyta