Combined structure- and ligand-based virtual screening to evaluate caulerpin analogs with potential inhibitory activity against monoamine oxidase B

Abstract

Natural marine products can help increase the quality of life in patients with neurological diseases. A large number of marine products act against Alzheimer’s disease through varying pathways. According to structure- and ligand-based analyses, caulerpin, an alkaloid primarily isolated from the genus Caulerpa, possesses activity against monoamine oxidase B. To predict the activity of caulerpin, we employed Volsurf descriptors and the machine learning Random Forest algorithm in parallel with a structure-based methodology that included molecular docking. Using caulerpin as a lead compound, a database containing 108 analogs was evaluated, and nine were selected as active. The structures selected as active exhibited polar and non-polar substitutions on the caulerpin skeleton, which were relevant for their activity. Dragon consensus drug-like scoring was applied to identify the active analogs that might serve as good drug candidates, and the entire group presented satisfactory performance. These results indicate the possibility of using these analogs as potential leads against Alzheimer’s disease.

References

  1. Baunbaek, D., Trinkler, N., Ferandin, Y., Lozach, O., Ploypradith, P., Rucirawat, S., Ishibashi, F., Iwao, M., Meijer, L., 2008. Anticancer alkaloid lamerallins inhibit protein kinase. Mar. Drugs 6, 514–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thield, K., Wiswedel, B., 2007. In: Preisach, C., Burkhrdt, H., Schimidt-Thieme, L., Decker, R. (Eds.), Data analysis, machine learning and applications. Springer, Berlin, pp. 319–326.

  3. Bidon-Chanal, A., Fuertes, A., Alondo, D., Perez, D.I., Martinez, A., Luque, F.J., Medina, M., 2013. Evidence fora new binding mode toGSH-3ß: allosteric regulation by the marine compound palinurin. Eur. J. Med. Chem. 60, 479–489.

    CAS  PubMed  Google Scholar 

  4. Binda, C., Aldeco, M., Geldenhuys, W.J., Tortorici, M., Mattevi, A., Edmondson, D.E., 2012. Molecular insights into human Monoamine Oxidase B inhibition by the glitazone anti-diabetes drugs. Med. Chem. Lett. 3, 39–42.

    CAS  Google Scholar 

  5. Binda, C., Milczek, E.M., Bonivento, D., Wang, J., Mattevi, A., Edmondson, D.E., 2011. Lights and shadows on monoamine oxidase inhibition in neuroprotective pharmacological therapies. Curr. Top. Med. Chem. 11, 2788–2796.

    CAS  PubMed  Google Scholar 

  6. Bolea, I., Gella, A., Unzeta, M., 2013. Propargylamine-derived multitarget-directed ligands: fighting Alzheimer’s disease with monoamine oxidase inhibitors. J. Neural Transm. 120, 893–902.

    CAS  PubMed  Google Scholar 

  7. Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32.

    Google Scholar 

  8. Cavalcante-Silva, L.H.A., Correia, A.C.C., Barbosa-Filho, J.M., Silva, B.A., Santos, B.V.O., Lira, D.P., Miranda, G.E.C., Cavalcante, F.A., Moreira, M.S.A., 2013. Spasmolytic effect of caulerpin involves blockade of Ca influx on guinea pig ileum. Mar. Drugs 11, 1553–1564.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, G., Zheng, S., Luo, X., Shen, J., Zhu, W., Liu, H., Gui, C., Zhang, J., Zheng, M., Puah, C.M., Chen, K., Jiang, H., 2005. Focused combinatorial library design based on structural diversity, druglikeness and binding affinity score. J. Comb. Chem. 7, 398–406.

    CAS  PubMed  Google Scholar 

  10. Choi, B.W., Ryu, G., Park, S.H., Kim, E.S., Shin, J., Roh, S.S., Shin, H.C., Lee, B.H., 2007. Anticholinesterase activity of plastoquinones from Sargassum sagamianum: lead compounds for Alzheimer’s diseases therapy. Phytother. Res. 21, 423–426.

    CAS  PubMed  Google Scholar 

  11. Choi, D.Y., Choi, H., 2015. Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer’s disease, Parkinson’s disease and ischemic brain stroke: their molecular targets and action mechanisms. Arch. Pharm. Res. 38, 139–170.

    CAS  PubMed  Google Scholar 

  12. Cruciani, G., Crivori, P., Carrupt, P.A., Testa, B., 2000. Molecular fields in quantitative structure-permeation relationships: the Volsurf approach. J. Mol. Struc. Theochem. 503, 17–30.

    CAS  Google Scholar 

  13. Custódio, L., Justo, T., Silvestre, L., Barradas, A., Duarte, C.V., Pereira, H., Barreira, L., Rauter, A.P., Alberío, F., Varela, J., 2012. Microalgae of different phyla display antioxidant, metal chelating and acetylcholinesterase inhibitors activities. Food Chem. 131, 134–140.

    Google Scholar 

  14. Debdab, M., Renault, S., Lozach, O., Meijer, L., Paquin, L., Carreaux, F., Bazureau, J.P., 2010. Synthesis and preliminary biological evaluation of new derivatives ofthe marine alkaloid leucettamine B as kinase inhibitors. Eur. J. Med. Chem. 45, 805–810.

    CAS  PubMed  Google Scholar 

  15. Fernandez, H.H., Chen, J.J., 2007. Monoamine oxidase-B inhibition in the treatment of Parkinson’s disease. Pharmacotherapy 27, 174–185.

    Google Scholar 

  16. Gerwick, W.H., Moore, B.S., 2012. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol. 19, 85–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gul, W., Hamann, M.T., 2005. Indole alkaloid marine natural products: an established source of cancer drugs leads with considerable promise forthe control of parasitic, neurological and other diseases. Life Sci. 78, 442–453.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hall, M., Fran K. E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H., 2009. The WEKAdata mining software: an update. SIGKDD Exploration 11.

    Google Scholar 

  19. Hamann, M., Alonso, D., Martin-Aparicio, E., Fuertes, A., Pérez-Puerto, M.J., Castro, A., Morales, S., Navarro, M.L., Del Monte-Millán, M., Medina, M., Pennaka, H., Balaiah, A., Peng, J., Cook, J., Wahyuono, S., Martínez, A., 2007. Glycogen synthase kinase (GSK-3ß) inhibitory activity and structure activity relationship (SAR) studies of themanzamine alkaloids. Potencial for Alzheimer’s disease. J. Nat. Prod. 70, 1397–1405.

    CAS  PubMed  Google Scholar 

  20. Hanley, J.A., McNeil, B.J., 1982. The meaning and use ofthe area under a receiver operation characteristic (ROC) curve. Radiology 143, 29–36.

    CAS  PubMed  Google Scholar 

  21. Imre, G., Veressc, G., Volfordd, A., Farkas, Ö., 2003. Molecules from the Minkowski space: an approach to building 3D molecular structure. J. Mol. Struc. Theochem. 666, 51–59.

    Google Scholar 

  22. Jin, D.Q., Lim, C.S., Sung, J.Y., Choi, H.G., Ha, I., Han, J.S., 2006. Ulva conglabata, a marine algae, has neuroprotective and antiinflammatory effects in murine hippocampal and microglial cells. Neurosci. Lett. 402, 154–158.

    CAS  PubMed  Google Scholar 

  23. LaFerla, F.M., Oddo, S., 2005. Alzheimer’s disease: abeta, tau and synaptic dysfunction. Trends Mol. Med. 11, 170–176.

    CAS  PubMed  Google Scholar 

  24. Langjae, R., Bussarawit, S., Yuenyongsawad, S., Ingkaninan, K., Plubrukarn, 2007. Acetylcholinesterase-inhibiting steroidal alkaloid from the sponge Corticium sp. Steroids 72, 682–685.

    CAS  PubMed  Google Scholar 

  25. Lill, M.A., Danielson, M.L., 2011. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des. 25, 13–19.

    CAS  PubMed  Google Scholar 

  26. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J., 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliver. Rev. 46, 3–26.

    CAS  Google Scholar 

  27. Liu, C.-C., Kanekiyo, T., Xu, H., Bu, G., 2013. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mayer, A.M.S., Rodrígiez, A.D., Berlink, R.G.S., Fusetani, N., 2011. Marine pharmacology in 2007–8: marine compounds with antibacterial, anticoagulant, antifungal, antiinflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanism of action. Comp. Biochem. Physiol. 153, 191–222.

    Google Scholar 

  29. Meijer, L., Thunnissen, A.M.W.H., White, A.W., Garnier, M., Nokolic, M., Tsai, L.H., Walter, J., Cleverley, K.E., Salinas, P.C., Wu, Y.Z., Bienart, J., Mandelkow, E-M., Kim, S.H., Petit, G.R., 2000. Inhibition of cyclin-dependet kinase, GSK-3ß and CSK1 by hymenialdisine, a marine sponge constituent. Chem. Biol. 7, 51–63.

    CAS  PubMed  Google Scholar 

  30. Meijer, L., Skaltsounis, A.L., Magiatis, P., Polychronopoulus, P., Knockaert, M., Leost, M., Ryan, X.P., Vonica, C.A., Brivanlou, A., Dajani, R., Crovace, C., Tarricone, C., Musacchio, A., Roe, S.M., Pearl, L., Greengard, P., 2003. GSK-3 selective inhibitors derived from tyrian purple indirubins. Chem. Biol. 10, 1255–1266.

    CAS  PubMed  Google Scholar 

  31. Motohashi, K., Toda, T., Sue, M., Furihata, K., Shizuri, Y., Matsuo, Y., Kasai, H., Shinya, K., Takagi, M., Izimikawa, M., Horikawa, Y., Seto, H., 2010. Isolation and structure elucidation of tumescenamides A and B, two peptides produced by Streptomyces tumescens YM23-260. J. Antibiot. 63, 549–552.

    CAS  PubMed  Google Scholar 

  32. Oprea, T.I., Sherbukhin, V., Svensson, P., Kuhler, T.C., 2000. Chemical information management in drug discovery: optimizing the computational and combinatorial chemistry interfaces. J. Mol. Graph. Model. 18, 512–524.

    CAS  PubMed  Google Scholar 

  33. Patil, P.O., Bari, S.B., Firke, S.D., Deshmukh, P.K., Donda, S.T., Patil, D.A., 2013. A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer’s disease. Bioorg. Med. Chem. 21, 2434–2450.

    CAS  PubMed  Google Scholar 

  34. Radwan, M.A., El-Sherbiny, M., 2007. Synthesis and antitumor activity of indolylpyrimidines: marine natural product meridianin D analogues. Bioorg. Med. Chem. 15, 1206–1211.

    CAS  PubMed  Google Scholar 

  35. Riediger, N.D., Othman, R.A., Suh, M., Moghadasian, M.H., 2009. A systemic review of the roles of n-3 fattyacid in health and diseases. J. Am. Diet. Assoc. 109, 669–679.

    Google Scholar 

  36. Rishton, G.M., 2003. Nonleadlikeness and leadlikeness in biochemical screening. Drug Discovery Today 8, 86–96.

    CAS  PubMed  Google Scholar 

  37. Schumacher, M., Kelkel, M., Dicato, M., Diederich, M., 2011. Gold from the sea: marine compounds inhibitors ofthe hallmarks of cancer. Biotechnol. Adv. 29, 531–547.

    CAS  PubMed  Google Scholar 

  38. Scotti, L., Fernandez, M.B., Muramatsu, E., Pasqualoto, K.F.M., Emereciano, V.D., Tavares, L.C., Silva, M.S., Scotti, M.T., 2011. Self-organizing maps and Volsurf approach to predict aldose reductase inhibition by flavonoid compounds. Rev. Bras. Farmacog. 21, 170–180.

    CAS  Google Scholar 

  39. Souza, E.T., Queiroz, A.C., Miranda, G.E.C., Lorenzo, V.P., Silva, E.F., Freire-Dias, T.L.M., Cupertino-Silva, Y.K., Melo, G.M.A., Santos, B.V.O., Chaves, M.C.O., Alexandre-Moreira, M.S., 2009a. Antinociceptive activities of crude methanolic extract and phases, n-butanolic, chloroformic and ethyl acetate from Caulerpa racemosa (Caulerpaceae). Rev. Bras. Farmacog. 19, 115–120.

    Google Scholar 

  40. Souza, E.T., Pereira, D.L., Queiroz, A.C., Miranda, G.E.C., Lorenzo, V.P., Silva, D.J.C., Bezerra, A.A., Campessato, E.A.M., Araújo-Júnior, J.X., Barbosa-Filho, J.M., Athayde-Filho, P.F., Santos, B.V.O., Chaves, M.C.O., Alexandre-Moreira, M.S., 2009b. The antinociceptive and antiinflammatory activities of Caulerpin, a bisindole alkaloid isolated from seaweeds ofthe genus Caulerpa. Mar. Drugs 7, 689–704.

    PubMed  PubMed Central  Google Scholar 

  41. Talete srl, Dragon (Software for Molecular Descriptor Calculation) Version 6.0. (2014). http://www.talete.mi.it/.

    Google Scholar 

  42. Thomas, N.V., Kim, S.K., 2011. Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ. Toxicol. Pharmacol. 32, 325–335.

    CAS  PubMed  Google Scholar 

  43. Thomsen, R., Christensen, M.H., 2006. Moldock: a new technique for high-accuracy molecular docking. J. Med. Chem. 49, 3315–3321.

    CAS  PubMed  Google Scholar 

  44. Tian, L.W., Feng, Y., Shimizu, Y., Pfeifer, T.A., Wellington, C., Hooper, J.N.A., Quinn, R.J., 2014. ApoE secretion modulating bromotyrosine derivate from the Australian marine sponge Callyspongia sp. Bioorg. Med. Chem. Lett. 24, 3537–3540.

    CAS  Google Scholar 

  45. Turk, T., Avgustin, J.A., Batista, U., Strugar, G., Kosmina, R., Civovic, S., Janussen, D., Kauferstein, S., Mebs, D., Sepcic, K., 2013. Biological activities of ethanolic extracts from deep sea Antarctic marine sponges. Mar. Drugs 11, 1126–1139.

    PubMed  PubMed Central  Google Scholar 

  46. Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., Kopple, K.D., 2002. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 12, 2615–2623.

    Google Scholar 

  47. Walters, W.P., Murcko, M.A., 2002. Prediction of‘drug-likeness’. Adv. Drug Deliv. Rev. 54, 255–271.

    CAS  PubMed  Google Scholar 

  48. Wyss-Coray, T., Rogers, J., 2012. Inflammation in Alzheimer disease - abrief review ofthe basic science and clinical literature. Cold Spring Harb. Perspect. Med. 2, a006346.

    Google Scholar 

  49. Yang, C.G., Liu, G., Jiang, B., 2002. Preparing functional bis (indole) pyrazine by stepwise cross-coupling reactions: an efficient method to construct the skeleton of dragmacidin D.J. Org. Chem. 67, 9392–9396.

    CAS  Google Scholar 

  50. Yoon, N.Y., Lee, S.H., Li, Y., Kim, S.K., 2009. Phlorotannins from Ishige okamurae and theiracetylandbutylcholinesterase inhibitors effects. J. Func. Foods 1, 331–335.

    CAS  Google Scholar 

  51. Zheng, S., Luo, X., Chen, G., Zhu, W., Shen, J., Chen, K., Jiang, H., 2005. A new rapid and effective chemistry space filter in recognizing a druglike database. J. Chem. Inf. Model. 45, 856–862.

    CAS  PubMed  Google Scholar 

  52. Zhu, W., Xie, W., Pan, T., Jankovic, J., Li, J., Youdim, M.B., Le, W., 2008. Comparison of neuroprotective and neurorestorative capabilities of rasagiline and selegiline against lactacystin-induced nigrostriatal dopaminergic degeneration. J. Neurochem. 105, 1970–1978.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Brazilian National Counsel of Technological and Scientific Development (CNPq) for financial support.

Author information

Affiliations

Authors

Contributions

VPL produced the analogs and performed the docking study. MTS and LS created the ligand based model. All of the authors have read the final manuscript and have agreed to its submission for appraisal.

Corresponding author

Correspondence to Marcus Tullius Scotti.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lorenzo, V.P., Filho, J.M.B., Scotti, L. et al. Combined structure- and ligand-based virtual screening to evaluate caulerpin analogs with potential inhibitory activity against monoamine oxidase B. Rev. Bras. Farmacogn. 25, 690–697 (2015). https://doi.org/10.1016/j.bjp.2015.08.005

Download citation

Keywords

  • Alzheimer’s disease
  • Caulerpin
  • Molecular docking
  • Monoamine oxidase B
  • Virtual screening