Hypolipidemic activity of friedelin isolated from Azima tetracantha in hyperlipidemic rats

Abstract

The hypolipidemic activity of friedelin isolated from Azima tetracantha Lam., Salvadoraceae, was studied in Triton WR-1339 and high-fat diet-induced hyperlipidemic rats. In Triton WR-1339 induced hyperlipidemic rats, treatment with friedelin (50 and 70 mg/kg) showed a significant (p < 0.01) lipid-lowering effect as assessed by reversal of plasma levels of total cholesterol (TC), triacylglycerides (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C). In high-fat diet fed hyperlipidemic rats, treatment with friedelin (50 and 70 mg/kg) caused lowering of lipid levels in plasma and liver. The hypolipidemic activity of friedelin was compared with fenofibrate, a known lipid-lowering drug, in both models.

References

  1. Antonisamy, P., Duraipandiyan, V., Ignacimuthu, S., 2011. Anti-inflammatory, analgesic and antipyretic effects of friedelin isolated from Azima tetracantha Lam. in mouse and rat models. J. Pharm. Pharmacol. 63, 1070–1077.

    CAS  Article  PubMed  Google Scholar 

  2. Baby, S., Anuradha, R., 2013. Hypolipidaemic activity of Punica granatum flowers on hydrogenated groundnut oil induced hyperctiolesterolemic rats. Int. Res. J. Pharm. Appl. Sci. 3, 136–139.

    Google Scholar 

  3. Ban, S.J., Rico, C.W., Um, I.C., Kang, M.Y., 2012. Antihyperlipidemic effects of hydrox-yethyl methylcellulose with varying viscosity in mice fed with high fat diet. Food Res. Int. 48, 1–6.

    CAS  Article  Google Scholar 

  4. Basuny, A.M.M., Arafat, S.M., El-Marzooq, M.A., 2012. Antioxidant and antihyperlipidemic activities of anthocyanins from eggplant peels. J. Pharm. Res. Rev. 2, 50–57.

    Google Scholar 

  5. De Graat, J., De Sauvage, N.P.R., Van Dam, M., Belsey, E.M., Kastelein, J.J., Haydn, P.P., Stalenhoef, A.F., 2002. Consumption of tall oil-derived phytos-terol in a chocolate matrix significantly decrease plasma total and low-density lipoprotein-cholesterol levels. Br. J. Nutr. 88, 479–488.

    Article  Google Scholar 

  6. Duraipandiyan, V., Gnanasekar, M., Ignacimuthu, S., 2010. Antifungal activity of triterpenoid isolated from Azima tetracantha leaves. Folia Histochem. Cytobiol. 48, 311–313.

    CAS  Article  PubMed  Google Scholar 

  7. Friedewald, W.T., Levy, R.I., Fredrickson, D.S., 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502.

    CAS  Article  Google Scholar 

  8. Ghatak, S.B., Panchal, S.J., 2012. Antihyperlipidemic activity of oryzanol, isolated from crude rice bran oil, on Triton WR-1339-induced acute hyperlipidemia in rats. Rev. Bras. Farmacogn. 22, 642–648.

    CAS  Article  Google Scholar 

  9. Guido, S., Joseph, T., 1992. Effect of chemically different calcium antagonists on lipid profile in rats fed on a high fat diet. Indian J. Exp. Biol. 30, 292–294.

    CAS  PubMed  Google Scholar 

  10. Harnafi, H., Bouanani Nel, H., Aziz, M., Serghini Caid, H., Ghalim, N., Amrani, S., 2007. The hypolipidaemic activity of aqueous Erica multiflora flowers extract in Triton WR-1339 induced hyperlipidaemic rats: a comparison with fenoflbrate. J. Ethnopharmacol. 109, 156–160.

    CAS  Article  PubMed  Google Scholar 

  11. Harnafi, H., Caid, H.S., Bouanani, N.H., Aziz, M., Amrani, S., 2008. Hypolipemic activity of polyphenol-rich extracts from Ocimum basilicum in Triton WR-1339-induced hyperlipidemic mice. Food Chem. 108, 205–212.

    CAS  Article  Google Scholar 

  12. Huang, H., Mai, W., Liu, D., Hao, Y., Tao, J., Dong, Y., 2008. The oxidation ratio of LDL: a predictor for coronary artery disease. Dis. Mark. 24, 341–349.

    CAS  Article  Google Scholar 

  13. Jiao, J., Zhang, Y., Lou, D., Wu, W., Zhang, Y., 2007. Antihyperlipidemic and antihypertensive effect of a triterpenoid-rich extract from bamboo shavings and vasodilator effect of friedelin on phenylephrine-induced vasoconstriction in thoracic aortas of rats. Phytother. Res. 21, 1135–1141.

    CAS  Article  PubMed  Google Scholar 

  14. Jo, S.P., Kim, J.It, Lim, Y.H., 2014. Antihyperlipidemic effects of stilbenoids isolated from Moms alba in rats fed a high-cholesterol diet. Food Chem. Toxicol. 65, 213–218.

    CAS  Article  PubMed  Google Scholar 

  15. Kirtikar K.R., Basu B.D., An I.C.S., 1984. Indian Medicinal Plants, second ed. Bishen Singh Mahendra Pal Singh, Dehra Dun, pp. 1541.

    Google Scholar 

  16. Levine, S., Saltzman, A., 2007. A procedure for inducing sustained hyperlipemia in rats by administration of a surfactant. J. Pharmacol. Toxicol. Methods 55, 224–226.

    CAS  Article  PubMed  Google Scholar 

  17. Li, T., Li, S., Du, L., Wang, N., Guo, M., Zhang, J., Yan, F., Zhang, H., 2010. Effects of haw pectic oligosaccharide on lipid metabolism and oxidative stress in experimental hyperlipidemia mice induced by high-fat diet. Food Chem. 121, 1010–1013.

    CAS  Article  Google Scholar 

  18. Nargis Begum, T., Muhammad Ilyas, M.H., Kalavathy, S., Vijaya Anand, A., Sampath Kumar, P., Senthil, R., 2009. Effects of ethanolic leaf extract ofAzima tetracantha Lam. on Ehrlich Ascites carcinoma tumour bearing mice. Res. J. Med. Med. Sci. 4, 351–354.

    Google Scholar 

  19. Natarajan, It, Rashid, T., Shuhaib, C.K., Balu, V., 2014. Azima tetracantha Lam. against causative agents in diabetic foot infections. Innovare J. Health Sci. 2, 9–12.

    Google Scholar 

  20. Noorani, A.A., Dwivedi, G., Kale, M.K., 2011. Antihyperlipidemic activity of Rimona-bant on high cholesterol diet induced hyperlipidemia in rats. Pharmacol. Online 1, 1212–1220.

    Google Scholar 

  21. Oliveira, H.C., Dos Santos, M.P., Grigulo, R., Lima, L.L., Martins, D.T.O., Lima, J.C.S., Stoppiglia, L.F., Lopes, C.F., Kawashita, N.F., 2008. Antidiabetic activity of Vatairea macrocarpa extract in rats. J. Ethnopharmacol. 115, 515–519.

    Article  PubMed  Google Scholar 

  22. Roux, S., Sable, E., Porsolt, R.D., 2004. Primary observation (Irwin) test in rodents for assessing acute toxicity of a test agent and its effect on behavior and physiological function. Curr. Protoc. Toxicol. 10, 1–23.

    Google Scholar 

  23. Sagar, P.M., Rekha, D.K., Farid, M., Sachin, L.B., 2012. Therapeutic approaches to drug targets in hyperlipidemia. Biomedicine 2, 137–146.

    Article  Google Scholar 

  24. Srinivasa Rao, B.D., Saileela, C.H., 2013. Antihyperlipidemic activity of methanolic extract of Rhinacanthus nasutus. Int. J. Res. Pharm. Chem. 3, 708–711.

    Google Scholar 

  25. Stephen Irudayaraj, S., Sunil, C., Duraipandiyan, V., 2013. In vitro antioxidant and antihyperlipidemic activities of Toddalia asiatica (L) Lam. leaves in Triton WR-1339 and high fat diet induced hyperlipidemic rats. Food Chem. Toxicol. 60, 135–140.

    Article  Google Scholar 

  26. Sunil, C., Ignacimuthu, S., Kumarappan, C., 2012. Hypolipidemic activity of Symptoms cochinchinensis S. Moore leaves in hyperlipidemic rats. J. Nat. Med. 66, 32–38.

    Article  PubMed  Google Scholar 

  27. Thendral Hepsibha, B., Sathiya, S., Saravana Babu, C., Premalakshmi, V., Sekar, T., 2011. In vitro studies on antioxidant and free radical scavenging activities of Azima tetracantha Lam leaf extracts. Indian J. Sci. Technol. 3, 571–577.

    Google Scholar 

  28. Vembu, S., Sivanasan, D., Prasanna, G., 2012. Effect of Phoenix deactylifera on high fat diet induced obesity. J. Chem. Pharm. Res. 4, 348–352.

    CAS  Google Scholar 

  29. Verma, P.R., Deshpande, S.A., Kamtham, Y.N., Vaidya, L.B., 2012. Hypolipidemic and antihyperlipidemic effects from an aqueous extract of Pachyptera hymenaea (DC.) leaves in rats. Food Chem. 132, 1251–1257.

    CAS  Article  PubMed  Google Scholar 

  30. Zarzecki, M.S., Araujo, S.M., Bortolotto, V.C., Trindade de Paula, M., Jesse, C.R., Marina, M., 2014. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol. Rep. 1, 200–208.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The Project was fully financially supported by King Saud University, through Vice Deanship of Research Chairs.

Author information

Affiliations

Authors

Contributions

VD contributed to the isolation and characterization of friedelin. CS evaluated the hypolipidemic activity of friedelin and wrote the manuscript. SSI contributed to laboratory work with CS. NAAD and SI evaluated the data and corrected the manuscript. All the authors have read the final manuscript and approved submission.

Corresponding author

Correspondence to Christudas Sunil.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duraipandiyan, V., Al-Dhabi, N.A., Irudayaraj, S.S. et al. Hypolipidemic activity of friedelin isolated from Azima tetracantha in hyperlipidemic rats. Rev. Bras. Farmacogn. 26, 89–93 (2016). https://doi.org/10.1016/j.bjp.2015.07.025

Download citation

Keywords

  • Friedelin
  • High-fat diet model
  • Triton WR-1339
  • Hyperlipidemia
  • Fenofibrate