On the use of nanotechnology-based strategies for association of complex matrices from plant extracts

Abstract

Depending on the method of extraction, plant extracts can contain an enormous variety of active molecules, such as phenolic compounds, essential oils, alkaloids, among others. In many cases, from a pharmacological point of view, it is interesting to work with crude extract or fractions instead of a single isolated compound. This could be due to multi-targeting effect of the extract, lack of knowledge of the active compounds, synergistic effect of the extract compounds, among others. In any case, in order to achieve a final product some issues must be overcome, including poor stability, solvent toxicity, and low solubility of the bioactive compound. Recently many nanotechnology-based strategies have been proposed as an alternative to solve these problems, especially liposomes, nanoemulsions and nanoparticles. In this sense, the present work aims to review the main nanotechnological approaches used for association of different plant extracts and the main achievements from using these technologies.

References

  1. Abreu, F.O.M.S., Oliveira, E.F., Paula, H.C.B., de Paula, R.C.M., 2012. Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr. Polym. 89. 1277–1282.

    CAS  PubMed  Google Scholar 

  2. Agnihotri, S.A., Mallikarjuna, N.N., Aminabhavi, T.M., 2004. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 100. 5–28.

    CAS  Google Scholar 

  3. Aisha, A., Majid, A.M.S., Ismail, Z., 2014. Preparation and characterization of nano liposomes of Orthosiphon stamineus ethanolic extract in soybean phospholipids. BMC Biotechnol. 14. 23.

    PubMed  PubMed Central  Google Scholar 

  4. Ajazuddin, Saraf, S., 2010. Applications of novel drug delivery system for herbal formulations. Fitoterapia 81. 680–689.

    PubMed  Google Scholar 

  5. Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G., Heras, A., 2009. Functional characterization of chitin and chitosan. Curr. Chem. Biol. 3. 203–230.

    CAS  Google Scholar 

  6. Bagheri, L., Madadlou, A., Yarmand, M., Mousavi, M.E., 2013. Nanoencapsulation of date palm pit extract in whey protein particles generated via desolvation method. Food Res. Int. 51. 866–871.

    CAS  Google Scholar 

  7. Baldissera, M.D., Da Silva, A.S., Oliveira, C.B., Zimmermann, C.E.P., Vaucher, R.A., Santos, R.C.V., Rech, V.C., Tonin, A.A., Giongo, J.L., Mattos, C.B., Koester, L., Santurio, J.M., Monteiro, S.G., 2013. Trypanocidal activity of the essential oils in their conventional and nanoemulsion forms: in vitro tests. Exp. Parasitol. 134. 356–361.

    CAS  PubMed  Google Scholar 

  8. Berne, B.J., Pecora, R., 2003. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics. Dover Publications, Inc., Mineola, NY.

    Google Scholar 

  9. Bidone, J., Argenta, D.F., Kratz, J., Pettenuzzo, L.F., Horn, A.P., Koester, L.S., Bassani, V.L., Simões, C.M.O., Teixeira, H.F., 2015. Antiherpes activity and skin/mucosa distribution of flavonoids from Achyrocline satureioides extract incorporated into topical nanoemulsions. Biomed. Res. Int., Article ID 238010. 7 pages.

    Google Scholar 

  10. Bidone, J., Bica, V.C., Petrovick, P.R., Simões, C.M.O., Koester, L.S., Bassani, V.L., Teixeira, H.F., 2014a. Simultaneous quantification of flavonoids from Achyrocline satureioides by a polar-reversed phase LC method: application to skin permeation/retention studies. Pharmazie 69. 5–9.

    CAS  PubMed  Google Scholar 

  11. Bidone, J., Zorzi, G.K., Carvalho, E.L.S., Simões, C.M.O., Koester, L.S., Bassani, V.L., Teixeira, H.F., 2014b. Incorporation of Achyrocline satureioides (Lam.) DC extracts into topical nanoemulsions obtained by means of spontaneous emulsification procedure. Ind. Crops Prod. 62. 421–429.

    CAS  Google Scholar 

  12. Birdi, K.S., 2009. Handbook of Surface and Colloid Chemistry, 3rd ed. CRC Press, Boca Ratón.

    Google Scholar 

  13. Bonifacio, B.V., Silva, P.B., Ramos, M.A., Negri, K.M., Bauab, T.M., Chorilli, M., 2014. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int. J. Nanomed. 9. 1–15.

    Google Scholar 

  14. Butt, H.J., Graf, K., Kappl, M., 2003. Physics and Chemistry of Interfaces. Wiley-VCH, Darmstadt.

    Google Scholar 

  15. Carvalho, E.L.S., Zorzi, G.K., Von Poser, G.L., Teixeira, H.F., Moreira, J.C.F., Bassani, V.L., 2008. Nanoestrutura compreendendo extratos vegetais, processo de produção de nanoestrutura compreendendo extratos vegetais e composições compreendendo as mesmas. Universidade Federal do Rio Grande do Sul, Brazil, BRPI0805156 A2.

    Google Scholar 

  16. Choi, M.J., Maibach, H.I., 2005. Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol. Physiol. 18. 209–219.

    CAS  PubMed  Google Scholar 

  17. Coradini, K., Lima, F.O., Oliveira, C.M., Chaves, P.S., Athayde, M.L., Carvalho, L.M., Beck, R.C.R., 2014. Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects. Eur. J. Pharm. Biopharm. 88. 178–185.

    CAS  PubMed  Google Scholar 

  18. Cosgrove, T., 2010. Colloid Science Principles, Methods and Applications, 2nd ed. John Wiley & Son Inc., Wiltshire.

    Google Scholar 

  19. Danielli, L.J., dos Reis, M., Bianchini, M., Camargo, G.S., Bordignon, S.A.L., Guerreiro, I.K., Fuentefria, A., Apel, M.A., 2013. Antidermatophytic activity of volatile oil and nanoemulsion of Stenachaenium megapotamicum (Spreng.) Baker. Ind. Crops Prod. 50. 23–28.

    CAS  Google Scholar 

  20. Das, J., Das, S., Samadder, A., Bhadra, K., Khuda-Bukhsh, A.R., 2012. Poly (lactideco- glycolide) encapsulated extract of Phytolacca decandra demonstrates better intervention against induced lung adenocarcinoma in mice and on A549 cells. Eur. J. Pharm. Sci. 47. 313–324.

    CAS  PubMed  Google Scholar 

  21. Dash, M., Chiellini, F., Ottenbrite, R.M., Chiellini, E., 2011. Chitosan–a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36. 981–1014.

    CAS  Google Scholar 

  22. de Oliveira, E.F., Paula, H.C.B., de Paula, R.C.M., 2014. Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids Surf. B 113. 146–151.

    Google Scholar 

  23. Dias, D.d.O., Colombo, M., Kelmann, R.G., De Souza, T.P., Bassani, V.L., Teixeira, H.F., Veiga Jr., V.F., Limberger, R.P., Koester, L.S., 2012. Optimization of headspace solid-phase microextraction for analysis of β-caryophyllene in a nanoemulsion dosage form prepared with copaiba (Copaifera multijuga Hayne) oil. Anal. Chim. Acta 721. 79–84.

    CAS  Google Scholar 

  24. Dias, D.d.O., Colombo, M., Kelmann, R.G., Kaiser, S., Lucca, L.G., Teixeira, H.F., Limberger, R.P., Veiga Jr., V.F., Koester, L.S., 2014. Optimization of copaiba oil-based nanoemulsions obtained by different preparation methods. Ind. Crops Prod. 59. 154–162.

    CAS  Google Scholar 

  25. Donsì, F., Annunziata, M., Sessa, M., Ferrari, G., 2011. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. Food Sci. Technol. 44. 1908–1914.

    Google Scholar 

  26. Donsì, F., Annunziata, M., Vincensi, M., Ferrari, G., 2012. Design of nanoemulsionbased delivery systems of natural antimicrobials: effect of the emulsifier. J. Biotechnol. 159. 342–350.

    PubMed  Google Scholar 

  27. Fang, C.L., Al-Suwayeh, S.A., Fang, J.Y., 2013. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol. 7. 41–55.

    CAS  PubMed  Google Scholar 

  28. Fenske, D.B., Chonn, A., Cullis, P.R., 2008. Liposomal nanomedicines: an emerging field. Toxicol. Pathol. 36. 21–29.

    CAS  PubMed  Google Scholar 

  29. Fernandes, C.P., de Almeida, F.B., Silveira, A.N., Gonzalez, M.S., Mello, C.B., Feder, D., Apolinario, R., Santos, M.G., Carvalho, J.C., Tietbohl, L.A., Rocha, L., Falcao, D.Q., 2014. Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract. J. Nanobiotechnol. 12. 22.

    Google Scholar 

  30. Filipe, V., Hawe, A., Jiskoot, W., 2010. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 27. 796–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Flores, F.C., Ribeiro, R.F., Ourique, A.F., Rolim, C.M.B., da Silva, C.d.B., Pohlmann, A.R., Beck, R.C.R., Guterres, S.S., 2011. Nanostructured systems containing an essential oil: protection against volatilization. Quim. Nova 34. 968–972.

    CAS  Google Scholar 

  32. Gadkari, P.V., Balaraman, M., 2015. Extraction of catechins from decaffeinated green tea for development of nanoemulsion using palm oil and sunflower oil based lipid carrier systems. J. Food Eng. 147. 14–23.

    CAS  Google Scholar 

  33. Garcia-Fuentes, M., Alonso, M.J., 2012. Chitosan-based drug nanocarriers: where do we stand? J. Control. Release 161. 496–504.

    CAS  Google Scholar 

  34. Gertsch, J., 2011. Botanical drugs, synergy, and network pharmacology: forth and back to intelligent mixtures. Planta Med. 77. 1086–1098.

    CAS  PubMed  Google Scholar 

  35. Ghosh, V., Mukherjee, A., Chandrasekaran, N., 2013. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason. Sonochem. 20. 338–344.

    CAS  PubMed  Google Scholar 

  36. Gibis, M., Zeeb, B., Weiss, J., 2014. Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food Hydrocolloid 38. 28–39.

    CAS  Google Scholar 

  37. Gillet, A., Compère, P., Lecomte, F., Hubert, P., Ducat, E., Evrard, B., Piel, G., 2011. Liposome surface charge influence on skin penetration behaviour. Int. J. Pharm. 411. 223–231.

    CAS  PubMed  Google Scholar 

  38. Gregoriadis, G., 2007a. Entrapment of Drugs and Other Materials into Liposomes, 3rd ed. New York, Informa Healthcare.

    Google Scholar 

  39. Gregoriadis, G., 2007b. Liposome Preparation and Related Techniques, 3rd ed. Informa Healthcare, New York.

    Google Scholar 

  40. Gröning, R., Breitkreutz, J., 1994. Nanoparticles in aqueous plant extracts? Eur. J. Pharm. Sci. 2. 178.

    Google Scholar 

  41. Gröning, R., Jörg, B., Baroth, V., Müller, S., 2002. Nanoparticles in plant extracts: influence of drugs on the formation of nanoparticles and precipitates in black tea infusions. Eur. J. Pharm. Sci. 15. 149–155.

    PubMed  Google Scholar 

  42. Han, H.J., Lee, J.-S., Park, S.-A., Ahn, J.-B., Lee, H.G., 2015. Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity. Colloids Surf. B 130. 93–100.

    CAS  Google Scholar 

  43. Han, L., Fu, Y., Cole, A.J., Liu, J., Wang, J., 2012. Co-encapsulation and sustained-release of four components in ginkgo terpenes from injectable PELGE nanoparticles. Fitoterapia 83. 721–731.

    CAS  PubMed  Google Scholar 

  44. Hiemenz, P.C., 1997. Principles of Colloid Science to Surface Chemistry, 3rd ed. Marcel Dekker, Inc.

    Google Scholar 

  45. Hosseini, S.F., Zandi, M., Rezaei, M., Farahmandghavi, F., 2013. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr. Polym. 95. 50–56.

    CAS  PubMed  Google Scholar 

  46. Hunter, R.J., 1989. Zeta Potential in Colloid Science: Principles and Applications. Academic Press, London.

    Google Scholar 

  47. Hunter, R.J., 2001. Foundations of Colloid Science, 2nd ed. Oxford University Press, Oxford.

    Google Scholar 

  48. Jia, D., Barwal, I., Thakur, S., Yadav, S.C., 2015. Methodology to nanoencapsulate hepatoprotective components from Picrorhiza kurroa as food supplement. Food Biosci. 9. 28–35.

    CAS  Google Scholar 

  49. Kahil, W.K.D., Salvia, K., 2013. Effects of Salvia officinalis extract and its nanoencapsulated form on methylmercury induced neurotoxic-stress in male rats. World Appl. Sci. J. 24. 826–837.

    Google Scholar 

  50. Kaur, C.D., Saraf, S., 2011. Topical vesicular formulations of Curcuma longa extract on recuperating the ultraviolet radiation-damaged skin. J. Cosmet. Dermatol. 10. 260–265.

    PubMed  Google Scholar 

  51. Kaur, I.P., Garg, A., Singla, A.K., Aggarwal, D., 2004. Vesicular systems in ocular drug delivery: an overview. Int. J. Pharm. 269. 1–14.

    CAS  PubMed  Google Scholar 

  52. Kim, H.-A., Jeong, K.-S., Kim, Y.K., 2008. Soy extract is more potent than genistein on tumor growth inhibition. Anticancer Res. 28. 2837–2841.

    PubMed  Google Scholar 

  53. Kim, Y.J., Houng, S.-J., Kim, J.H., Kim, Y.-R., Ji, H.G., Lee, S.-J., 2012. Nanoemulsified green tea extract shows improved hypocholesterolemic effects in C57BL/6 mice. J. Nutr. Biochem. 23. 186–191.

    CAS  PubMed  Google Scholar 

  54. Kwon, M.C., Choi, W.Y., Seo, Y.C., Kim, J.S., Yoon, C.S., Lim, H.W., Kim, H.S., Ahn J. H. Lee, H.Y., 2012. Enhancement of the skin-protective activities of Centella asiatica L. urban by a nano-encapsulation process. J. Biotechnol. 157. 100–106.

    CAS  PubMed  Google Scholar 

  55. Kwon, S.S., Kim, S.Y., Kong, B.J., Kim, K.J., Noh, G.Y., Im, N.R., Lim, J.W., Ha, J.H., Kim, J., Park, S.N., 2015. Cell penetrating peptide conjugated liposomes as transdermal delivery system of Polygonum aviculare L. extract. Int. J. Pharm. 483. 26–37.

    CAS  PubMed  Google Scholar 

  56. Li, W., Yi, S., Wang, Z., Chen, S., Xin, S., Xie, J., Zhao, C., 2011. Self-nanoemulsifying drug delivery system of persimmon leaf extract: optimization and bioavailability studies. Int. J. Pharm. 420. 161–171.

    CAS  PubMed  Google Scholar 

  57. Lv, Y., Yang, F., Li, X., Zhang, X., Abbas, S., 2014. Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocolloid 35. 305–314.

    CAS  Google Scholar 

  58. Mahdi, E.S., Noor, A.M., Sakeena, M.H., Abdullah, G.Z., Abdulkarim, M.F., Sattar, M.A., 2011. Formulation and in vitro release evaluation of newly synthesized palm kernel oil esters-based nanoemulsion delivery system for 30% ethanolic dried extract derived from local Phyllanthus urinaria for skin antiaging. Int. J. Nanomed. 6. 2499–2512.

    CAS  Google Scholar 

  59. Mainardes, R.M., Urban, M.C.C., Cinto, P.O., Chaud, M.V., Evangelista, R.C., Gremião, M.P.D., 2005. Colloidal carriers for ophthalmic drug delivery. Curr. Drug Targets 6. 363–371.

    CAS  PubMed  Google Scholar 

  60. Manea, A.-M., Vasile, B.S., Meghea, A., 2014. Antioxidant and antimicrobial activities of green tea extract loaded into nanostructured lipid carriers. C. R. Chim. 17. 331–341.

    CAS  Google Scholar 

  61. Menchicchi, B., Fuenzalida, J.P., Bobbili, K.B., Hensel, A., Swamy, M.J., Goycoolea, F.M., 2014. Structure of chitosan determines its interactions with mucin. Biomacromolecules 15. 3550–3558.

    CAS  PubMed  Google Scholar 

  62. Mittal, A.K., Chisti, Y., Banerjee, U.C., 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31. 346–356.

    CAS  Google Scholar 

  63. Moghimipour, E., Aghel, N., Zarei Mahmoudabadi, A., Ramezani, Z., Handali, S., 2012. Preparation and characterization of liposomes containing essential oil of Eucalyptus camaldulensis leaf. J. Nat. Pharm. Prod. 7. 117–122.

    Google Scholar 

  64. Moulaoui, K., Caddeo, C., Manca, M.L., Castangia, I., Valenti, D., Escribano, E., Atmani, D., Fadda, A.M., Manconi, M., 2015. Identification and nanoentrapment of polyphenolic phytocomplex from Fraxinus angustifolia: in vitro and in vivo wound healing potential. Eur. J. Med. Chem. 89. 179–188.

    CAS  PubMed  Google Scholar 

  65. Muchow, M., Maincent, P., Muller, R.H., 2008. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev. Ind. Pharm. 34. 1394–1405.

    CAS  PubMed  Google Scholar 

  66. Myers, D., 1999. Surfaces, Interfaces and Colloids, 2nd ed. John Wiley & Sons, Inc., New York.

    Google Scholar 

  67. Nemitz, M.C., Yatsu, F.K.J., Bidone, J., Koester, L.S., Bassani, V.L., Garcia, C.V., Mendez, A.S.L., von Poser, G.L., Teixeira, H.F., 2015. A versatile, stability-indicating and high-throughput ultra-fast liquid chromatography method for the determination of isoflavone aglycones in soybeans, topical formulations, and permeation assays. Talanta 134. 183–193.

    CAS  PubMed  Google Scholar 

  68. Ogiso, T., Yamaguchi, T., Iwaki, M., Tanino, T., Miyake, Y., 2001. Effect of positively and negatively charged liposomes on skin permeation of drugs. J. Drug Target. 9. 49–59.

    CAS  PubMed  Google Scholar 

  69. Panatieri, L.F., 2015. Avaliação da atividade amebicida de nanoemulsões contendo extrato hexânico de Pterocaulon balansae (Asteraceae) frente a Acanthamoeba sp. Porto Alegre, 85 p. Dissertação de Mestrado, Programa de Pós-Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul.

    Google Scholar 

  70. Pant, M., Dubey, S., Patanjali, P.K., Naik, S.N., Sharma, S., 2014. Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int. Biodeterior. Biodegrad. 91. 119–127.

    CAS  Google Scholar 

  71. Pardeike, J., Hommoss, A., Muller, R.H., 2009. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 366. 170–184.

    CAS  PubMed  Google Scholar 

  72. Peeters, L., Sanders, N.N., Braeckmans, K., Boussery, K., de Voorde, J.V., De Smedt, S.C., Demeester, J., 2005. Vitreous: a barrier to nonviral ocular gene therapy. Invest. Ophthalmol. Vis. Sci. 46. 3553–3561.

    PubMed  Google Scholar 

  73. Prista, L.N., Alves, A.C., Morgado, R., 2011. Tecnologia Farmacêutica, 8th ed. Fundação Calouste Gulbenkian, Lisbon.

    Google Scholar 

  74. Quintão, F.J.O., Tavares, R.S.N., Vieira-Filho, S.A., Souza, G.H.B., Santos, O.D.H., 2013. Hydroalcoholic extracts of Vellozia squamata: study of its nanoemulsions for pharmaceutical or cosmetic applications. Rev. Bras. Farmacogn. 23. 101–107.

    Google Scholar 

  75. Rabinovich-Guilatt, L., Couvreur, P., Lambert, G., Dubernet, C., 2004. Cationic vectors in ocular drug delivery. J. Drug Target. 12. 623–633.

    CAS  PubMed  Google Scholar 

  76. Rando, G., Ramachandran, B., Rebecchi, M., Ciana, P., Maggi, A., 2009. Differential effect of pure isoflavones and soymilk on estrogen receptor activity in mice. Toxicol. Appl. Pharmacol. 237. 288–297.

    CAS  PubMed  Google Scholar 

  77. Rao, J.P., Geckeler, K.E., 2011. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym. Sci. 36. 887–913.

    CAS  Google Scholar 

  78. Rates, S.M.K., 2001. Plants as source of drugs. Toxicon 39. 603–613.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rowe, R.C., Sheskey, P.J., Owen, S.C., 2003. Handbook of Pharmaceutical excipients. In: Aliphatic Polyesters. APhA Publications, pp. 385–387.

    Google Scholar 

  80. Sahoo, S.K., Parveen, S., Panda, J.J., 2007. The present and future of nanotechnology in human health care. Nanomedicine 3. 20–31.

    CAS  PubMed  Google Scholar 

  81. Sakulku, U., Nuchuchua, O., Uawongyart, N., Puttipipatkhachorn, S., Soottitantawat, A., Ruktanonchai, U., 2009. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int. J. Pharm. 372. 105–111.

    CAS  PubMed  Google Scholar 

  82. Sanna, V., Lubinu, G., Madau, P., Pala, N., Nurra, S., Mariani, A., Sechi, M., 2015. Polymeric nanoparticles encapsulating white tea extract for nutraceutical application. J. Agric. Food Chem. 63. 2026–2032.

    CAS  PubMed  Google Scholar 

  83. Shaw, D.J., 1992. Introduction to Colloid and Surface Chemistry, 4th ed. Antony Rowe Ltd, Eastbourne.

    Google Scholar 

  84. Simões, C.M.O., Schenkel, E.P., Gosmann, G., Mello, J.C.P., Mentz, L.A., Petrovick, P.R., 2001. Farmacognosia: da planta ao medicamento. Editora da Universidade UFRGS/Editora da UFSC, Porto Alegre/Florianópolis.

    Google Scholar 

  85. Sinico, C., De Logu, A., Lai, F., Valenti, D., Manconi, M., Loy, G., Bonsignore, L., Fadda, A.M., 2005. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur. J. Pharm. Biopharm. 59. 161–168.

    CAS  PubMed  Google Scholar 

  86. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., Garcia-Celma, M.J., 2005. Nanoemulsions. Curr. Opin. Colloid Interface Sci. 10. 102–110.

    CAS  Google Scholar 

  87. Souto, E.B., Almeida, A.J., Muller, R.H., 2007. Lipid nanoparticles (SLN (R), NLC (R)) for cutaneous drug delivery: structure, protection and skin effects. J. Biomed. Nanotechnol. 3. 317–331.

    CAS  Google Scholar 

  88. Souto, E.B., Mueller, R.H., 2008. Cosmetic features and applications of lipid nanoparticles (SLN (R), NLC (R)). Int. J. Cosmet. Sci. 30. 157–165.

    CAS  PubMed  Google Scholar 

  89. Spigno, G., Donsì, F., Amendola, D., Sessa, M., Ferrari, G., De Faveri, D.M., 2013. Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste. J. Food Eng. 114. 207–214.

    CAS  Google Scholar 

  90. Strasser, M., Noriega, P., Löbenberg, R., Bou-Chacra, N., Bacchi, E.M., 2014. Antiulcerogenic potential activity of free and nanoencapsulated Passiflora serratodigitata L. extracts. Biomed. Res. Int., 7 pp.

    Google Scholar 

  91. Su, J., Sripanidkulchai, K., Hu, Y., Chaiittianan, R., Sripanidkulchai, B., 2013. Increased in situ intestinal absorption of phytoestrogenic diarylheptanoids from Curcuma comosa in nanoemulsions. AAPS PharmSciTech 14. 1055–1062.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sugumar, S., Clarke, S.K., Nirmala, M.J., Tyagi, B.K., Mukherjee, A., Chandrasekaran, N., 2014. Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull. Entomol. Res. 104. 393–402.

    CAS  PubMed  Google Scholar 

  93. Tadros, T., Izquierdo, P., Esquena, J., Solans, C., 2004. Formation and stability of nanoemulsions. Adv. Colloid Interface Sci. 108–109. 303-318.

    Google Scholar 

  94. Tamilvanan, S., 2004. Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems. Prog. Lipid Res. 43. 489–533.

    CAS  PubMed  Google Scholar 

  95. Tsai, W.-C., Li, W.-C., Yin, H.-Y., Yu, M.-C., Wen, H.-W., 2012. Constructing liposomal nanovesicles of ginseng extract against hydrogen peroxide-induced oxidative damage to L929 cells. Food Chem. 132. 744–751.

    CAS  Google Scholar 

  96. Venuganti, V.V.K., Perumal, O.P., 2009. Poly(amidoamine) dendrimers as skin penetration enhancers: Influence of charge, generation, and concentration. J. Pharm. Sci. 98. 2345–2356.

    CAS  PubMed  Google Scholar 

  97. Vianna, D., Corvello, F., Ródio, C., Bruxel, F., Velho, A., Carvalho, E.L.S., von Poser, G.L., Teixeira, H.F., 2011. Spectrophotometric determination of coumarins incorporated into nanoemulsions containing Pterocaulon balansae extract. Lat. Am. J. Pharm. 30. 1487–1491.

    CAS  Google Scholar 

  98. Washington, C., 1992. Particle Size Analysis in Pharmaceutics and Other Industries–Theory and Practice. Ellis Worwood, London.

    Google Scholar 

  99. Wen, Z., Liu, B., Zheng, Z., You, X., Pu, Y., Li, Q., 2010. Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique. Chem. Eng. Res. Des. 88. 1102–1107.

    CAS  Google Scholar 

  100. Yen, F.L., Wu, T.H., Lin, L.T., Cham, T.M., Lin, C.C., 2008. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food Chem. Toxicol. 46. 1771–1777.

    CAS  PubMed  Google Scholar 

  101. Zorzi, G.K., 2007. Nanoemulsões contendo solução extrativa de Achyrocline satureioides: formulação, permeação cutânea e atividade antioxidante. Porto Alegre, 100 p. Dissertação de Mestrado, Programa de Pós-Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul.

    Google Scholar 

  102. Zorzi, G.K., Párraga, J.E., Seijo, B., Sánchez, A., 2011. Design of hybrid nanoparticles based on cationized gelatin and the polyanions dextran sulfate and chondroitin sulfate for ocular gene therapy. Macromol. Biosci. 11. 905–913.

    CAS  PubMed  Google Scholar 

  103. Zorzi, G.K., Párraga, J.E., Seijo, B., Sánchez, A., 2015. On the biomaterials for nanostructured ocular therapeutics. Curr. Org. Chem. 19. 1443–1459.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank Brazilian Federal Agency for the Support and Evaluation of Graduate Education, and National Council for Scientific and Technological Development for financial support. GZ wishes to thank the National Council for Scientific and Technological Development (Programa Jovens Talentos—grant number 028/2012) for his postdoctoral grant.

Author information

Affiliations

Authors

Contributions

GZ searched the literature in different databases, collected the main data, and drafted the first version of the manuscript. All authors suggested the outline of the article, and participated in the selection of the articles used in this review. All authors participatedr in the writing, editing, and revising the final version of the article.

Corresponding author

Correspondence to Helder Ferreira Teixeira.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zorzi, G.K., Carvalho, E.L.S., von Poser, G.L. et al. On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Rev. Bras. Farmacogn. 25, 426–436 (2015). https://doi.org/10.1016/j.bjp.2015.07.015

Download citation

Keywords

  • Essential oil
  • Liposomes
  • Nanoemulsions
  • Nanoparticles
  • Nanotechnology
  • Plant extract