Evaluation of limonoid production in suspension cell culture of Citrus sinensis

Abstract

The use of cell and plant tissue culture techniques to produce economically important active metabolites has been growing. Among these substances are total limonoid aglycones, which are produced by “pera” orange (Citrus sinensis (L.) Osbeck, Rutaceae) and have received considerable attention because of their anticancer actions. The main objective of the present study was to analyze and compare the levels of limonoid aglycones in seeds, callus cultures (originating from seeds), callus cultures (originating from hypocotyls), cell suspensions from hypocotyls cells, and cell suspensions from cotyledons. The cell cultures or C. sinensis were obtained by inoculating two strains of callus in MS medium supplemented with 2.0 (xM 2, 4-dichlorophenoxyacetic acid, 7.0 (xM benzyl aminopurine, and 3% (w/v) sucrose in the dark. The highest concentrations of limonoid aglycone that were obtained were observed in cotyledon cell lines (240 mg/100 g dry weight) that were produced on day 21 of culture and hypocotyl cell lines on day 7(210 mg/100 g dry weight). Explants of different origins under the same culture conditions had different limonoid aglycone content. The present results may suggest strategies for enhancing the productivity of biologically important limonoid aglycones and investigating the complex pathways of these secondary metabolites in plant tissue cultures.

References

  1. Bilal, H., Akram, W., Hassan, S.A., Sahar, S., Iqbal, M.M., 2013. Determination of limonin and nomilin contents in different citrus cultivars using high performance liquid chromatography. Pak. J. Sci. Ind. R. B 56, 36–40.

    CAS  Google Scholar 

  2. Berhow, M.A., Hasegawa, S., Manners, G.D., 2000. Citrus limonoids. Functional Chemicals in Agriculture and Food, 2000. American Chemical Society, Washington, DC, pp. 253–260.

    Google Scholar 

  3. Breska, A.P., Ibarra, P., 2007. Colorimetric method forthe estimation of total limonoid aglycones and glucoside contents in Citrus juices. J. Agric. Food Chem. 13, 5013–5017.

    Google Scholar 

  4. Collin, H.A., 2001. Secondary product formation in plant tissue cultures. Plant Growth Regul. 34, 119–134.

    CAS  Article  Google Scholar 

  5. Davies, K.M., Deroles, S.C., 2014. Prospects forthe use of plant cell cultures in food biotechnology. Curr. Opin. Biotechnol. 26, 133–140.

    CAS  Article  Google Scholar 

  6. Endo, T., Kita, M., Shimada, T., Moryguchi, T., Hidaka, T., Matsumoto, R., Hasegawa, S., Omura, M., 2002. Modification of limonoid metabolism in suspension cell cultures of Citrus. Plant Biotechnol. 19, 397–403.

    CAS  Article  Google Scholar 

  7. Fumagali, E., Gonçalves, R.A.C., Machado, M.F.P.S., Vidoti, G.J., Oliveira, A.J.B., 2008. Produção de metabólitos secundários em cultura de células e tecidos de plantas: O exemplo dos gêneros Tabernaemontana e Aspidosperma. Rev. Bras. Farmacogn. 18, 627–641.

    CAS  Article  Google Scholar 

  8. Gill, S.S., Anjum, N.A., Hasanuzzaman, M., Gil, R., Trivedi, D.K., Ahmad, I., Pereira, E., Tuteja, N., 2013. Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol. Biochem. 70, 204–212.

    CAS  Article  Google Scholar 

  9. Gonçalves, S., Romano, A., 2013. In vitro culture of lavenders (Lavandula spp.) and the production of secondary metabolites. Biotechnol. Adv. 31, 166–174.

    Article  Google Scholar 

  10. Gonçalves, R.A.C., Cunha, A.C., Oliveira, J.B.O., Machado, M.F.P., Santos, R.A.M., 2010. Aplicações da cultura de células e tecidos de plantas em reações de biotransformação. In: Marsaioli, A.J., Porto, A.L.M. (Eds.), Biocatálise e Biotransformação: Fundamentos e Aplicações. Editora Schoba, São Paulo, pp. 102-157, 2010.

    Google Scholar 

  11. Hasegawa, S., Hoagland, J.E., 1977. Biosynthesis of limonoids in Citrus. Phytochemistry 16, 469–471.

    CAS  Article  Google Scholar 

  12. Khalil, A.T., Maatooq, G.T., El Sayed, K.A., 2002. Limonoids from Citrus reticulate. Z. Naturforsch. 58c, 165–170.

    Google Scholar 

  13. Mansell, R.L., McIntosh, C.A., 1991. Citrus spp. Vitro Culture the Production of Naringin Limonin. In: Bajaj, Y.P.S. (Ed.), Medicinal and Aromatic Plants III, Biotechnology in Agriculture and Forestry, vol. 15. Spring-Verlag, Berlin, Heildelberg, pp. 193–210.

    Google Scholar 

  14. Moriguchi, T., Kita, M., Hasegawa, S., Omura, M., 2003. Molecular approach to citrus flavonoid and limonoid biosynthesis. J. Food Agric. Environ. 1, 22–25.

    CAS  Google Scholar 

  15. Murashige, T., Skoog, F.A., 1962. Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.

    CAS  Article  Google Scholar 

  16. Muranaka, T., Saito, K., 2010. Production of pharmaceuticals by plant tissue cultures. In: Mander, L., Liu, H.W. (Eds.), Comprehensive Natural Products II: Chemistry and Biology, vol. 3. Elsevier, Oxford, pp. 615–628.

    Article  Google Scholar 

  17. Niedz, R.P., Moshonas, M.G., Peterson, B., Shapiro, J.P., Shaw, P.E., 1987. Analysis of sweet orange (Citrus sinensis (L.) Osbeck) callus cultures for volatile compounds by gas chromatography with mass selective detector. Plant Cell Tissue Org. 51, 181–185.

    Article  Google Scholar 

  18. Ohta, H., Fong, C.H., Berhow, M., Hasegawa, S., 1993. Thin-layer and high performance liquid chromatographic analyses of limonoids and limonoid glucosides in Citrus seeds. J. Chromatogr. 639, 295–302.

    CAS  Article  Google Scholar 

  19. Okwu, D.E., 2008. Citrus fruits: a rich source of phytochemical and their roles in human health. Int. J. Chem. Sci. 6, 451–471.

    CAS  Google Scholar 

  20. Puricelli, L., Innocenti, G., Delle Monache, G., Caniato, R., Filippini, R., Cappelletti, E.M., 2002. In vivo and in vitro production of alkaloids by Haplophyllum patavinum. Nat. Prod. Lett. 16, 95–100.

    CAS  Article  Google Scholar 

  21. Raval, K.N., Hellwig, S., Prakash, G., Ramos-Plasencia, A., Srivastava, A., Büchs, J., 2003. Stage process for the production of azadirachtin-related limonoids in suspension culture of Azadirachta indica. J. Biosci. Bioeng. 96, 16–22.

    CAS  Article  Google Scholar 

  22. Ralphs, M.H., Gardner, D.R., 2001. Distribution of norditerpene alkaloids in tall larkspur plant parts through the growing season. Biochem. Syst. Ecol. 29, 117–124.

    CAS  Article  Google Scholar 

  23. Rouseff, R.L., Nagy, S., 1982. Distribution of limonoids in Citrus seeds. Phytochemistry 21, 85–90.

    CAS  Article  Google Scholar 

  24. Roy, A., Saraf, S., 2006. Limonoids: overview of significant bioactive triterpenes distributed in plants kingdom. Biol. Pharm. Bull. 29, 191–201.

    CAS  Article  Google Scholar 

  25. Salmore, A.K., Hunter, M.D., 2001. Environmental and genotypic influences on isoquinoline alkaloid content in Sanguinaria canadensis. J. Chem. Ecol. 27, 1713–1747.

    CAS  Article  Google Scholar 

  26. Sidhu, O.P., Bel, H.M., 1996. Seasonal variation in azaradirachtin in seeds of Azadirachta indica. Curr. Sci. 70, 1084–1085.

    CAS  Google Scholar 

  27. Solemain, A., Parvin, Z., Esmaeil, M., 2005. Quantification of limonin in Iranian orange juice concentrates using high-performance liquid chromatography and spectro-photometric methods. Eur. Food Res. Technol. 221, 202–207.

    Article  Google Scholar 

  28. Smetanska, I., 2008. Production of secondary metabolites using plant cell cultures. Adv. Biochem. Eng. Biotechnol. 111, 187–228.

    CAS  PubMed  Google Scholar 

  29. Tian, Q., Li, D., Barbacci, D., Schwartz, S.J., Patil, B.S., 2003. Electron ionization mass spectrometry of citrus limonoids. Rapid Commun. Mass Espectrom., 2517–2522.

    Google Scholar 

  30. Vikram, A., Jayaprakasha, G.K., Patil, B.S., 2007. Simultaneous determination of citrus limonoids aglycones and glucosides by high performance liquid chromatography. Anal. Chem. Acta 590, 180–186.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank CNPq and CAPES for financial support. We also thank Dr. Eliezer Rodrigues Souto, Department of Agronomy, State University of Maringá, Maringá, PR, Brazil, for allowing us to use his laboratory for the induction and maintenance of callus cultures of C. sinensis.

Author information

Affiliations

Authors

Contributions

EFG (Ph.D. student) and ERS contributed to the running of the plant cell culture laboratory work and analysis. EFG and APSF contributed to MS, NMR and colorimetric date analysis and discussion. TCPC (undergraduate student) contributed to maintenance and cultivation of plant cell cultures and phytochemical work. AJBO wrote manuscript. RACG contributed to critical reading of the manuscript. AJBO and RACG designed the study, supervised the laboratory work and contributed to the critical reading of the manuscript. All the authors have read the final manuscript and approved submission.All authors read and approved the final manuscript submission.

Corresponding author

Correspondence to Arildo José Braz de Oliveira.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gerolino, E.F., Chierrito, T.P.C., Filho, A.S. et al. Evaluation of limonoid production in suspension cell culture of Citrus sinensis. Rev. Bras. Farmacogn. 25, 455–461 (2015). https://doi.org/10.1016/j.bjp.2015.05.008

Download citation

Keywords

  • Citrus sinensis
  • Biotechnology
  • Limonoid aglycones
  • Limonin
  • Plant cell culture