Marine organisms as source of extracts to disrupt bacterial communication: bioguided isolation and identification of quorum sensing inhibitors from Ircinia felix

Abstract

tIn this study, 39 extracts from marine organisms were evaluated as quorum sensing inhibitors, collected in the Colombian Caribbean Sea and the Brazilian Coast including 26 sponges, seven soft corals, five algae and one zooanthid. The results showed that crude extracts from the soft coral Eunicea laciniata, and the sponges Svenzea tubulosa, Ircinia felix and Neopetrosia carbonaria were the most promising source of quorum sensing inhibitors compounds without affecting bacterial growth, unlike the raw extracts of Agelas citrina, Agelas tubulata, Iotrochota arenosa, Topsentia ophiraphidites, Niphates caycedoi, Cliona tenuis, Ptilocaulis walpersi, Petrosia pellasarca, and the algae Laurencia catarinensis and Laurencia obtusa, which displayed potent antibacterial activity against the biosensors employed. The crude extract from the sponge I. felix was fractionated, obtaining furanosesterterpenes which were identified and evaluated as quorum sensing inhibitors, showing a moderate activity without affecting the biosensor’s growth.

References

  1. Anta, C., Gonzáles, N., Santafé, G., Rodríguez, J., Jiménez, C., 2002. New Xenia diterpenoids from the Indonesian soft coral Xenia sp. J. Nat. Prod. 65, 766–768.

    CAS  Article  PubMed  Google Scholar 

  2. Assmann, M., Lichte, E., Pawlik, J.R., Köck, M., 2000. Chemical defenses of the Caribbean sponges Agelas wiedenmayeri and Agelas conifera. Mar. Ecol. Prog. Ser. 22, 255–262.

    Article  Google Scholar 

  3. Blunt, J.W., Copp, B.R., Munro, M.H.G., Northcote, P.T., Prinsep, M.R., 2010. Marine natural products. Nat. Prod. Rep. 27, 165–237.

    CAS  Article  PubMed  Google Scholar 

  4. Boyer, M., Wisniewski-Dyé, F., 2009. Cell–cell signalling in bacteria: not simply a matter of quorum. FEMS Microbiol. Ecol. 21, 1–19.

    Article  Google Scholar 

  5. Braekman, J.C., Daloze, D., Stoller, C., Van Soest, R.W.M., 1992. Chemotaxonomy of Agelas (Porifera: Demospongiae). Biochem. Syst. Ecol. 20, 417–431.

    CAS  Article  Google Scholar 

  6. Cafieri, F., Carnuccio, R., Fattorusso, E., Taglialatela-Scafati, O., Vallefuoco, T., 1997. Anti-histaminic activity of bromopyrrole alkaloids isolated from Caribbean Agelas sponges. Bioorg. Med. Chem. Lett. 9, 2283–2288.

    Article  Google Scholar 

  7. Carletti, I., Banaigs, B., Amade, P., 2000. Matemone a new bioactive brominecontaining oxindole alkaloid from the Indian Ocean sponge Iotrochota purpurea. J. Nat. Prod. 63, 981–983.

    CAS  Article  PubMed  Google Scholar 

  8. Cuadrado, C.T., (Master’s thesis) 2010. Aislamiento de N-acilhomoserinlactonas de algunas bacterias procedentes del Mar Caribe Colombiano, como evidencia de la existencia de circuitos de quorum sensing. Universidad Nacional de Colombia, Bogotá, 270 pp.

    Google Scholar 

  9. De Almeida, L.P., Carroll, A.R., Towerzey, L., King, G., McArdle, B.M., Kern, G., 2008. Exiguaquinol: a novel pentacyclic hydroquinone from Neopetrosia exigua that inhibits Helicobacter pylori MurI. Org. Lett. 19, 2585–2588.

    Google Scholar 

  10. Dickschat, J.S., 2010. Quorum sensing and bacterial biofilms. Nat. Prod. Rep. 27, 343–369.

    CAS  Article  PubMed  Google Scholar 

  11. Dobretsov, S., Teplitski, M., Paul, V., 2009. Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25, 413–427.

    CAS  Article  PubMed  Google Scholar 

  12. Dobretsov, S., Teplitski, M., Bayer, M., Gunasekera, S., Proksch, P., Paul, V., 2011. Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling 27, 893–905.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Fan, G., Li, Z., Shen, S., Zeng, Y., Yang, Y., Xu, M., 2010. Baculiferins A-O, O-sulfated pyrrole alkaloids with anti-HIV-1 activity, from the Chinese marine sponge Iotrochota baculifera. Bioorg. Med. Chem. 18, 5466–5474.

    CAS  Article  PubMed  Google Scholar 

  14. Greenberg, E.P., 2003. Bacterial communication and group behavior. J. Clin. Invest. 112, 1288–1290.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Gunasekera, P.S., Sennett, S.H., Kelly-Borgues, M., Bryant, R.W., 1994. Ophirapstanol trisulfate, a new biological active steroid sulfate from the deep water marine sponge Topsentia ophiraphidites. J. Nat. Prod. 57, 1751–1754.

    CAS  Article  PubMed  Google Scholar 

  16. Harvell, D., Jordán-Dahlgren, E., Merkel, S., Rosenberg, E., Raymundo, L., Smith, G., Weil, E., 2007. Coral disease environmental drivers, and the balance between coral and microbial associates. Oceanography 20, 172–195.

    Article  Google Scholar 

  17. Keifer, P.A., Schwartz, R.E., Koker, M.E.S., Hughes Jr., R.G., Rittschof, D., Rinehart, K.L., 1991. Bioactive bromopyrrole metabolites from the Caribbean sponge Agelas conifera. J. Org. Chem. 56, 2965–2975.

    CAS  Article  Google Scholar 

  18. Kim, J.S., Kim, Y.H., Seo, Y.W., Park, S., 2007. Quorum sensing inhibitors from the red alga Ahnfeltiopsis flabelliformis. Biotechnol. Bioproc. Eng. 30, 308–311.

    Article  Google Scholar 

  19. Kong, F., Burgoyne, D.L., Andersen, J., Allen, T.M., 1992. Pseudoaxinellin, a cyclic heptapeptide isolated from the Papua New Guinea sponge Pseudoaxinella massa. Tetrahedron Lett. 33, 3269–3272.

    CAS  Article  Google Scholar 

  20. Lhullie, C., Falkenberg, M., Ioannou, E., Quesada, A., Papazafiri, P., Antunes-Horta, P., Schenkel, E.P., Vagias, C., Roussis, V., 2010. Cytotoxic halogenated metabolites from the Brazilian red alga Laurencia catarinensis. J. Nat. Prod. 73, 27–32.

    Article  Google Scholar 

  21. Lowery, C.A., Dickerson, T.J., Janda, K.D., 2008. Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chem. Soc. Rev. 37, 1337–1346.

    CAS  Article  PubMed  Google Scholar 

  22. Martin, C.A., Hoven, A.D., Cook, A.M., 2008. Therapeutic frontiers: preventing and treating infectious diseases by inhibiting bacterial quorum sensing. Eur. J. Clin. Microbiol. 27, 635–642.

    CAS  Article  Google Scholar 

  23. Martinez, A., Duque, C., Hara, N., Fujimoto, Y., 1995. Variabilin 11-metiloctadecanoate a branched-chain fatty acid ester of furanosesterpene tetronic acid, from sponge Ircinia felix. Nat. Prod. Lett. 6, 281–284.

    CAS  Article  Google Scholar 

  24. Martínez, A., Duque, C., Sato, N., Fujimoto, Y., 1997. (8Z, 13Z, 20Z)-strobilinin and (7Z, 13Z, 20Z)-felixinin: new furanosesterterpene tetronic acids from marine sponges of the genus Ircinia. Chem. Pharm. Bull. 45, 181–184.

    Article  Google Scholar 

  25. Meseguer, D., Kiil, S., Dam-Johansen, K., 2004. Antifouling technology–past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progr. Org. Coat. 50, 75–104.

    Article  Google Scholar 

  26. Mora-Cristancho, J.A., Arevalo-Ferro, C., Ramos, F.A., Tello, E., Duque, C., Lhullier, C., Falkenberg, M., Schenkel, E.P., 2011. Antifouling activities against colonizer marine bacteria of extracts from marine invertebrates collected in the Colombian Caribbean Sea and on the Brazilian Coast (Santa Catarina). Z. Naturforsch. C 66, 515–526.

    CAS  Article  PubMed  Google Scholar 

  27. Nakao, Y., Shiroiwa, T., Murayama, S., Matsunaga, S., Goto, Y., Matsumoto, Y., 2004. Identification of Renieramycin A as an antileishmanial substance in a marine sponge Neopetrosia sp. Mar. Drugs 25, 55–62.

    Article  Google Scholar 

  28. Ng, W.L., Bassler, B.L., 2009. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 17, 197–222.

    Article  Google Scholar 

  29. Osorno, O., Castellanos, L., Ramos, F.A., Arévalo, C., 2012. Gas chromathography as a tool in quorum sensing studies. In: Salih, B., Çelikbıçak, Ö. (Org.). Gas Chromatography–Biochemicals, Narcotics and Essential Oils. Intech, Croatia, pp. 67–96.

    Google Scholar 

  30. Peters, L., König, G.M., Wright, A.D., Pukall, R., Stackebrandt, E., Eberl, L., 2003. Secondary metabolites of Flustra foliacea and their influence on bacteria. Appl. Environ. Microbiol. 69, 3469–3475.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Qian, P.Y., Lau, S.C.K., Dahms, H.U., Dobretsov, S., Harder, T., 2007. Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar. Biotechnol. 12, 399–410.

    Article  Google Scholar 

  32. Rasmussen, T.B., Givskov, M., 2006. Quorum sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol. 296, 149–161.

    CAS  Article  PubMed  Google Scholar 

  33. Shen, X., Perry, T.L., Dunbar, C.D., Kelly-Borges, M., Hamann, M.T., 1998. Debromosceptrin, an alkaloid from the Caribbean sponge Agelas conifera. J. Nat. Prod. 61, 1302–1303.

    CAS  Article  PubMed  Google Scholar 

  34. Sjöstrand, U., Kornprobst, J.M., Djerassi, C., 1981. Minor and trace sterols from marine invertebrates 29 (22E)-ergosta-5,22,25-trien-3β-ol and (22E,24R)-24,26-dimethylcholesta-5,22,25(27)-trien-3β-ol. Two new marine sterols from the sponge Pseudopxinella lunachata. Steroids 38, 355–364.

    Article  PubMed  Google Scholar 

  35. Skindersoe, M., Ettinger-Epstein, P., Rasmussen, T., Bjarnsholt, T., De Nys, R., Givskov, M., 2008. Quorum sensing antagonism from marine organisms. Mar. Biotechnol. 20, 56–63.

    Article  Google Scholar 

  36. Teplitski, M., Ritchie, K., 2009. How feasible is the biological control of coral diseases? Trends Ecol. Evol. 24, 378–385.

    Article  PubMed  Google Scholar 

  37. Thale, Z., Johnson, T., Tenney, K., Wenzel, P.J., Lobkovsky, E., Clardy, J., 2002. Structures and 24 cytotoxic properties of sponge-derived bisannulated acridines. J. Org. Chem. 67, 9384–9391.

    CAS  Article  PubMed  Google Scholar 

  38. Yang, S.W., Chan, T.M., Pomponi, S.A., Chen, G., Wright, A.E., Patel, M., 2003. A new bicyclic guanidine alkaloid, Sch 575948, from a marine Sponge, Ptilocaulis spiculifer. J. Antibiot. 56, 970–972.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was conducted as part of a joint project financially supported by CNPq/MCT/Brazil (grant number 490151/2007-8) and COLCIENCIAS/Colombia (grant number 358-2007). The work was also financed by other grants from Colciencias and “Fundación para la Promoción de la Investigación y la Tecnología del Banco de la República”. The Colombian authors greatly acknowledge Prof. Dr. Kathrin Riedel (Department of Microbiology, Institute of Plant Biology, University of Zürich) and Prof. Dr. Sven Zea from the Universidad Nacional de Colombia for their interest and assistance in this work, and Prof. Dr. Paulo Horta, Dr. Cintia Llhulier and Prof. Dr. Eloir P. Schenkel for the collection and identification of the algae.

Author information

Affiliations

Authors

Contributions

JQ and JBV (PhD students) contributed by running the laboratory work, biological studies, analysis of the data and drafting the paper. GMC (Postdoctoral researcher) contributed to chromatographic procedures and to critical reading of the manuscript. CA contributed by collecting samples, identification, and biological studies. LC and CD designed the study, supervised the laboratory work and contributed to critical reading of the manuscript. All the authors have read the final manuscript and approved its submission.

Corresponding author

Correspondence to Leonardo Castellanos.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quintana, J., Brango-Vanegas, J., Costa, G.M. et al. Marine organisms as source of extracts to disrupt bacterial communication: bioguided isolation and identification of quorum sensing inhibitors from Ircinia felix. Rev. Bras. Farmacogn. 25, 199–207 (2015). https://doi.org/10.1016/j.bjp.2015.03.013

Download citation

Keywords

  • Quorum sensing
  • Marine products
  • Ircinia felix
  • Furanosesterterpenes
  • Biofilm