Stevia rebaudiana loaded titanium oxide nanomaterials as an antidiabetic agent in rats


Stevia rebaudiana (Bertoni) Bertoni, Asteraceae, is a plant with hypoglycemic and antihyperlipidemic properties. S. rebaudiana (SrB) has become a lead candidate for the treatment of the diabetes mellitus. However, chronic administrations of S. rebaudiana are required to cause the normoglycemic effect. Importantly, nanomaterials in general and titanium dioxide (TiO2) in particular have become effective tools for drug delivery. In this work, we obtained TiO2 nanomaterials with SrB at different concentrations (10, 20 and 30 μM) by sol–gel method. After this nanomaterials were characterized by Fourier transform infrared spectroscopy and transmission electron microscopy. Where it was demonstrated, the presence of the S. rebaudiana in TiO2 nanomaterials, which were observed as hemispherical agglomerated particles of different sizes. The nanomaterials were evaluated in male rats whose diabetes mellitusphenotype was induced by alloxan (200 mg/kg, i.p.). The co-administration of TiO2-SrB (20 and 30 μM) induced a significant and permanent decrease in the glucose concentration since 4 h, until 30 days post-administration. Likewise, the concentrations of insulin, glycosylated hemoglobin, cholesterol, and triacylglycerides showed a significant recovery to basal levels. The major finding of the study was that the TiO2-SrB (20 and 30 μM) has a potent and prolonged activity antidiabetic. TiO2 can be considered like an appropriated vehicle in the continuous freeing of active substances to treat of diabetes mellitus.


  1. Barb, C., Bartlett, J., Kong, L., 2004. Silica particles: a novel drug-delivery system. Adv. Mater. 16, 1959–1966.

    Article  Google Scholar 

  2. Chan, P., Xu, D.Y., Liu, J.C., Chen, Y.J., Tomlinson, B., Huang, W.P., 1998. The effect of stevioside on blood pressure and plasma catecholamines in spontaneously hypertensive rats. Life Sci. 63, 1679–1684.

    CAS  Article  PubMed  Google Scholar 

  3. Chen, T.H., Chen, S.C., Chan, P., Chu, Y.L., Yang, H.Y., Cheng, J.T., 2005. Mechanism of the hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana. Planta Med. 71, 108–113.

    CAS  Article  PubMed  Google Scholar 

  4. Curry, L.L., Roberts, A., 2008. Subchronic toxicity of rebaudioside A. Food Chem. Toxicol. 46, 11–20.

    Google Scholar 

  5. Himanshu, M., Manish, S., Narendra, S., Darshana, M., Mehta, B., Jain, D.C., 2011. Antidiabetic activity of medium-polar extract from the leaves of Stevia rebaudiana Bert. (Bertoni) on alloxan induced diabetic rats. J. Pharm. Bioallied. Sci. 3, 242–248.

    Article  Google Scholar 

  6. Jeppesen, P.B., Gregersen, S., Poulsen, C.R., Hermansen, K., 2000. Stevioside acts directly on pancreatic beta cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+-channel activity. Metabolism 49, 208–214.

    CAS  Article  PubMed  Google Scholar 

  7. Laitiff, A.A., Teoh, S.L., Das, S., 2010. Wound healing in diabetes mellitus: traditional treatment modalities. Clin. Ter. 161, 359–364.

    CAS  PubMed  Google Scholar 

  8. López, T.D., Francos, M.A., González, A.F., Díaz-García, M.E., Badía-Laíño, R., 2015. Controlled release of nafcillin using biocompatible “Dummy” molecularly imprinted sol–gel nanospheres. Curr. Top. Med. Chem. 15, 262–270.

    Article  PubMed  Google Scholar 

  9. López, T., Bata-García, J.L., Esquivel, D., Ortiz-Islas, E., González, R., Ascencio, J., Quintana, P., Oskam, G., Álvarez-Cervera, F.J., Heredia-López, F.J., Góngora-Alfaro, J.L., 2010. Treatment of Parkinson’s disease: nanostructured sol–gel silicadopamine reservoirs for controlled drug release in the central nervous system. Int. J. Nanomed. 6, 19–31.

    Article  Google Scholar 

  10. López, T., Ortiz, E., Álvarez, M., Navarrete, J., Odriozola, J.A., Martínez-Ortega, F., Páez-Mozo, E.A., Escobar, P., Espinoza, K.A., Rivero, I.A., 2010. Study of the stabilization of zinc phthalocyanine in sol–gel TiO2 for photodynamic therapy applications. Nanomedicine 6, 777–785.

    Article  PubMed  Google Scholar 

  11. Malviya, N., Jain, S., Malviya, S., 2010. Antidiabetic potential of medicinal plants. Acta Pol. Pharm. 67, 113–118.

    PubMed  Google Scholar 

  12. Misra, H., Soni, M., Silawat, N., Mehta, D., Mehta, B.K., Jain, D.C., 2011. Antidiabetic activity of medium-polar extract from the leaves of Stevia rebaudiana Bert. (Bertoni) on alloxan-induced diabetic rats. J. Pharm. Bioallied Sci. 3 (2), 242–248.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Park, J.E., Cha, Y.S., 2010. Stevia rebaudiana Bertoni extract supplementation improves lipid and carnitine profiles in C57BL/6J mice fed a high-fat diet. J. Sci. Food Agric. 90, 1099–10105.

    CAS  Article  PubMed  Google Scholar 

  14. Raskovic, A., Gavrilovic, M., Jakovljevic, V., Sabo, J., 2004. Glucose concentration in the blood of intact and alloxan-treated mice after pretreatment with commercial preparations of Stevia rebaudiana (Bertoni). Eur. J. Drug Metab. Pharmacokinet. 29, 87–90.

    CAS  Article  Google Scholar 

  15. Shivanna, N., Naika, M., Khanum, F., Kaul, V.K., 2013. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J. Diabetes Complications 27, 103–113.

    Article  PubMed  Google Scholar 

  16. Soejarto, D.D., Kinghorn, A.D., Farnsworth, N.R., 1982. Potential sweetening agent of plant origin III: organoleptic evaluation of Stevia leaf herbarium samples for sweetness. J. Nat. Prod. 45, 590–599.

    CAS  Article  PubMed  Google Scholar 

  17. Son, S.J., Bai, X., Lee, S.B., 2007. Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 1. Drug/gene delivery applications. Drug Discovery Today 12, 650–656.

    CAS  Article  PubMed  Google Scholar 

  18. Starratt, A.N., Kirby, C.W., Pocs, R., Brandle, J.E., Rebaudioside, F., 2002. A diterpene glycoside from Stevia rebaudiana. Phytochemistry 59, 367–370.

    CAS  Article  PubMed  Google Scholar 

  19. Szkudelski, T., 2001. The mechanism of alloxan and streptozotocin action in B-cells of the rat pancreas. Physiol. Res. 50, 537–546.

    CAS  PubMed  Google Scholar 

Download references


The authors thank Dr. Carlos Escamilla for his help with the animal care and thanks to Thomas Edwards, PhD for editing the English language text.

Author information




AL, MGC, ST, AD, BV, GI, GC and AMR design the study and wrote the protocol. AL, AD and ST performed the experiments. AL, AD, AMR, ST, BV and GC managed the literature searches and analysis; MGC and AD undertook the statistical analysis. All contributing authors have approved the final manuscript.

Corresponding author

Correspondence to Alfonso Díaz.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Langle, A., González-Coronel, M.A., Carmona-Gutiérrez, G. et al. Stevia rebaudiana loaded titanium oxide nanomaterials as an antidiabetic agent in rats. Rev. Bras. Farmacogn. 25, 145–151 (2015).

Download citation


  • Diabetes
  • Stevia rebaudiana
  • Nanomaterials
  • Hypoglycemic
  • Antihyperlipidemic