Chromenes from leaves of Calea pinnatifida and evaluation of their leishmanicidal activity

Abstract

Calea pinnatifida (R. Br.) Less., Asteraceae, is popularly known as “quebra-tudo”, “cipó-cruz” or “aruca”. This species is used in the folk medicine for the treatment of stomach pain, giardiasis and amoebiasis. The aim of this study was to isolate and identify chromenes from leaves of C. pinnatifida and evaluate their leishmanicidal activity. A fraction from leaves of C. pinnatifida was analyzed for their chemical con-stituents, resulting in the isolation and characterization of four known chromenes: 6-acetyl-7-hydroxy-2,2-dimethylchromene (1), 6-acetyl-7-methoxy-2,2-dimethylchromene (2), 6-(1-hydroxyethyl)-7-methoxy-2,2-dimethylchromene (3) and 6-(1-ethoxyethyl)-7-methoxy-2,2-dimethylchromene (4). Structure identification of isolated compounds involved analysis of spectral data of 1D and 2D-NMR. The isolated compounds are here reported for the first time in C. pinnatifida, and the chromenes 1 and 3 show a moderate leishmanicidal activity.

References

  1. Aguilar-Guadarrama, B., Navarro, V., Leon-Rivera, I., Rios, M.Y., 2009. Active compounds against tinea pedis dermatophytes from Ageratina pichinchensis var. bustamenta. Nat. Prod. Res. 23, 1559–1565.

    CAS  Article  Google Scholar 

  2. Alizadeh, B.H., Fouroumadi, A., Ardestani, S.K., Poorrajab, F., Shafiee, A., 2008. Leish-manicidal evaluation of novel synthetic chromenes. Arch. Pharm. Chem. Life Sci. 341, 787–793.

    CAS  Article  Google Scholar 

  3. Bandara, B.M.R., Hewage, C.M., Karunaratne, V., Wannigama, G.P., Adikaram, N.K.B., 1992. An antifungal chromene from Eupatorium riparium. Phytochemistry 31, 1983–1985.

    CAS  Article  Google Scholar 

  4. Batista Jr., J.M., Lopes, A.A., Ambrosio, D.L., Regasini, L.O., Kato, M.J., Bolzani, V.D.S., Cicarelli, R.M.B., Furlan, M., 2008. Natural chromenes and chromene derivatives as potential anti-trypanosomal agents. Biol. Pharm. Bull. 31, 538–540.

    CAS  Article  Google Scholar 

  5. Bohlmann, F., Bapuji, M., King, R.M., Robinson, H., 1982a. Naturally occurring terpene derivatives. Part 421. New heliangolides Calea oxylepis. Phytochemistry 21, 1164–1166.

    CAS  Article  Google Scholar 

  6. Bohlmann, F., Gupta, R.K., Jakupovic, J., King, R.M., Robinson, H., 1982b. Furanoheliangolides and farnesol derivatives from Calea hispida. Phytochemistry 21, 2899–2903.

    CAS  Article  Google Scholar 

  7. Bohlmann, F., Gupta, R.K., Jakupovic, J., King Robert, M., Robinson, H., 1981a. Naturally occurring terpene derivatives. Part 338. Eudesmanolidesand heliangolides from Calea rotundifolia. Phytochemistry 20, 1635–1637.

    CAS  Google Scholar 

  8. Bohlmann, F., Zdero, C., King, R.M., Robinson, H., 1981b. Naturally occurring terpene derivatives. Part 343. Heliangolides, and nerolidol and p-hydroxyacetophenone derivatives from Calea species. Phytochemistry 20, 1643–1647.

    CAS  Article  Google Scholar 

  9. Burkhardt, G., Becker, H., Grubert, M., Thomas, J., Eicher, T., 1994. Bioactive chromenes from Rhyncholacis penicillata. Phytochemistry 37, 1593–1597.

    CAS  Article  Google Scholar 

  10. Castro, V., Tamayo-Castillo, G., Jakupovic, J., 1989. Sesquiterpene lactonesand other constituents from Calea prunifolia and C peckii. Phytochemistry 28, 2415–2418.

    CAS  Article  Google Scholar 

  11. Chen, J.J., Duh, C.Y., Chen, I.S., 2005. Cytotoxic chromenes from Myriactis humilis. Planta Med. 71, 370–372.

    CAS  Article  Google Scholar 

  12. Do Nascimento, A.M., Salvador, M.J., Candido, R.C., Ito, I.Y., de Oliveira, D.C., 2004. Antimicrobial activity of extracts and some compounds from Calea platylepis. Fitoterapia 75, 514–519.

    Article  Google Scholar 

  13. Fang, N., Yu, S., Mabry, T.J., 1988. Chromenes from Ageratina arsenii and revised structures of two epimeric chromene dimers. Phytochemistry 27, 1902–1905.

    CAS  Article  Google Scholar 

  14. Flach, A., Gregel, B., Simionatto, E., da Silva, U.F., Zanatta, N., Morel, A.F., Linares, C.E., Alves, S.H., 2002. Chemical analysis and antifungal activity of the essential oil of Calea clematidea. Planta Med. 68, 836–838.

    CAS  Article  Google Scholar 

  15. Ferreira, Z.S., Roque, N.F., Gottlieb, O.R., Oliveira, F., Gottleib, H.E., 1980a. Structural clarification of germacranolides from Calea species. Phytochemistry 19, 1481–1484.

    CAS  Article  Google Scholar 

  16. Ferreira, Z.S., Roque, N.F., Gottlieb, O.R., Oliveira, F., 1980b. Chemical study on Calea pinnatifida. Cien. Cult. 32, 83–85.

    CAS  Google Scholar 

  17. Gomes, M., Gil, J.F., 2011. Topical anti-inflammatory activity of Calea prunifolia HBK (Asteraceae) in the TPA model of mouse ear inflammation. J. Braz. Chem. Soc. 22, 2391–2395.

    Article  Google Scholar 

  18. González, A.G., Aguiar, Z.E., Grillo, T.A., Luis, J.G., Rivera, A., Calle, J., 1991. Chromenes from Ageratum conyzoides. Phytochemistry 30, 1137–1139.

    Article  Google Scholar 

  19. Guerrero, M.F., Puebla, P., Carrón, R., Martín, M.L., Arteaga, L., Román, L.S., 2002. Assessment of the antihypertensive and vasodilator effects of ethanolic extracts of some Colombian medicinal plants. J. Ethnopharmacol. 80, 37–42.

    CAS  Article  Google Scholar 

  20. Harel, D., Khalid, S.A., Kaiser, M., Brun, R., Wünsch, B., Schmidt, T.J., 2011. Encecalol angelate, anunstable chromene from Ageratum conyzoides L.: total synthesis and investigation of its antiprotozoal activity. J. Ethnopharmacol. 137, 620–625.

    CAS  Article  Google Scholar 

  21. Harel, D., Schepmann, D., Prinz, H., Brun, R., Schmidt, T.J., Wuensch, B., 2013. Natural product derived antiprotozoal agents: synthesis, biological evaluation, and structure-activity relationships of novel chromene and chromane derivatives. J. Med. Chem. 56, 7442–7448.

    CAS  Article  Google Scholar 

  22. Iqbal, M.C.M., Jayasinghe, U.L.B., Herath, H.M.T.B., Wijesekara, K.B., Fujimoto, Y., 2004. Fungistatic chromene from Ageratum conyzoides. Phytoparasitica 32, 119–126.

    CAS  Article  Google Scholar 

  23. Kato, E.T.M., Akisue, M.K., Matos, F.J.A., Craveiro, A.A., Alencar, J.M., 1994. Constituents of Calea pinnatifida. Fitoterapia 65, 377.

    CAS  Google Scholar 

  24. Klocke James, A., Balandrin Manuel, F., Adams Robert, P., Kingsford, E., 1985. Insec-ticidal chromenes from the volatile oil of Hemizonia fitchii. J. Chem. Ecol. 11, 701–712.

    Article  Google Scholar 

  25. Kohler, I., Jenett-Siems, K., Siems, K., Hernández, M.A., Ibarra, R.A., Berendsohn, W.G., Bienzle, U., Eich, E., 2002. In vitro antiplasmodial investigation of medicinal plants from El Salvador. Z. Naturforsch C 57, 277–281.

    CAS  Article  Google Scholar 

  26. Malhado Filho, 1947. Novo antidisenterico vegetal; Calea pinnatifida Less. Arq. Cir. Clin. Exp. 31, 43.

    PubMed  Google Scholar 

  27. Mondin, C.A., Bringel Jr., J.B.A., 2010. In: Forzza, R.C., et al. (Eds.), Calea., Available from: http://floradobrasil.jbrj.gov.br/2010/FB103751 (accessed June 2014).

  28. Mors, W.B., Rizzini, C.T., Pereira, N.A., 2000. Medicinal Plants of Brazil. Reference Publications, Algonac.

    Google Scholar 

  29. Nakagawa, Y., Linuma, M., Matsuura, N., Yi, K., Naoi, M., Nakayama, T., Nozawa, Y., Akao, Y., 2005. A potent apoptosis-inducing activity of a sesquiterpene lactone, arucanolide, in HL60 cells: a crucial role of apoptosis-inducing factor. J. Pharm. Sci. 97, 242–252.

    CAS  Article  Google Scholar 

  30. Ogungbea, I.V., Erwinb, W.R., Setzer, W.N., 2014. Antileishmanial phytochemical phenolics: molecular docking to potential proteintargets.J. Mol. Graph. Model. 48, 105–117.

    Article  Google Scholar 

  31. Prusk, J.F., Urbatsch, L.E., 1988. Five new species of Calea (Compositae: Heliantheae) from planaltine Brazil. Brittonia 40, 341–356.

    Article  Google Scholar 

  32. Ramos, R.R., Alarcon-Aguilar, F., Lara-Lemus, A., Flores-Saenz, J.L., 1992. Hypoglicemic effect of plants used in Mexico as antidiabetics. Arch. Med. Res. 23, 59–64.

    Google Scholar 

  33. Ribeiro, V.L.S., Santos, J.C., Martins, J.R., Schripsemad, J., Siqueira, I.R., von Poser, G.L., Apel, M.A., 2011. Acaricidal properties of the essential oil and precocene II obtained from Calea serrata (Asteraceae) on the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet. Parasitol. 179, 195–198.

    CAS  Article  Google Scholar 

  34. Rios, M.Y., Aguilar-guadarrama, A.B., Navarro, V., 2003. Two new benzofurans from Eupatorium aschenborniana and their antimicrobial activity. Planta Med. 69, 967–970.

    CAS  Article  Google Scholar 

  35. Roque, N., Carvalho, V.C., 2011. Estudos taxonômicos do gênero Calea (Asteraceae, Neurolaeneae) no estado da Bahia, Brasil. Rodriguésia 62, 547–561.

    Article  Google Scholar 

  36. Schwende, H., Fitzke, E., Ambs, P., Dieter, P., 1996. Differences in the state of differ-entiation ofTHP-1 cells induced by phorbol esterand 1,25-dihydroxyvitamin D3. J. Leukoc. Biol. 59, 555–561.

    CAS  Article  Google Scholar 

  37. Steelink, C., Marshall, G.P., 1979. Structures, syntheses, and chemotaxonomic signif-icanceofsome newacetophenone derivatives fromEnceliafarinosaGray.J. Org. Chem. 44, 1429–1433.

    CAS  Article  Google Scholar 

  38. Steinbeck, C., Spitzer, V., Starosta, M., von Poser, G., 1997. Identification of two chromenes from Calea serrata by semiautomatic structure elucidation. J. Nat. Prod. 60, 627–662.

    CAS  Article  Google Scholar 

  39. Thomas, N., Zachariah, S.M., 2013. Pharmacological activities of chromene derivatives: an overview. AsianJ. Pharm. Clin. Res. 6, 11–15.

    CAS  Google Scholar 

  40. Wu, H., Fronczek, F.R., Burandt Jr., C.L., Zjawiony, J.K., 2011. Antileishmanial Germacranolides from Calea zacatechichi. Planta Med. 77, 749–753.

    CAS  Article  Google Scholar 

  41. Zhai, H., Zhao, G., Yang, G., Sun, H., Yi, B., Sun, L., Chen, W., Zheng, S., 2010. A new chromene glycoside from Tithonia diversifolia. Chem. Nat. Compd. 46, 198–200.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to physician César Simmionato for the help in the collection of the species, the Dr. John Pruski for identification of the plant, the CAPES and CNPq for financial support and the Federal University of Santa Catarina.

Author information

Affiliations

Authors

Contributions

TCL (PhD student) contributed in all steps of this study. DTMC and MS contributed to the biological studies. RJS contributed to isolation and purification of the compounds. AB and ADCS contributed to spectroscopic analysis. MS contributed to critical reading of the manuscript. MWB supervised the laboratory work and contributed to design of the study and critical reading of the manuscript. All the authors have read the final manuscript and approved the submission.

Corresponding author

Correspondence to Maique W. Biavatti.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lima, T.C., Santos, A.D.C., Costa, D.T.M. et al. Chromenes from leaves of Calea pinnatifida and evaluation of their leishmanicidal activity. Rev. Bras. Farmacogn. 25, 7–10 (2015). https://doi.org/10.1016/j.bjp.2015.01.004

Download citation

Keywords

  • Asteraceae
  • Calea pinnatifida
  • Chromenes
  • Leishmanicidal activity