Journal of Bionic Engineering

, Volume 14, Issue 4, pp 589–599 | Cite as

Fine Structure of Scorpion Pectines for Odor Capture

  • Zhiwu Han
  • Daobing Chen
  • Ka Zhang
  • Honglie Song
  • Kejun Wang
  • Shichao Niu
  • Junqiu Zhang
  • Luquan Ren


The paper revealed the fine structure of the scorpion (Mesobuthus martensii) pectines and showed how the fine structure of the pecten influences odor flow. The first step of our investigation was to prove that scorpion pectines work as olfactory and this was done via experiments utilizing paraffin coverage. Subsequently, the location, morphology, section structure, and arrangement of the pectines were studied via stereomicroscopy and Scanning Electron Microscopy (SEM). The fine structure of pecten comprises a comb-like structure with 24-30 knife-like teeth and thousands of micron bowl-like pecten sensilla in staggered arrangement on the surface of the tooth. Computational Fluid Dynamics (CFD) was applied to predict odor flow around the pecten via the relevant Reynolds numbers. The comb-like structure amplified the odor flow velocity similar to an amplifier, transporting the odor flow of increased velocity to the micron pecten sensilla, improving transport efficiency of the odor flow. The staggered arrangement of the pecten sensilla generated a vortex, improving contact duration between pecten sensilla and odorant molecules. Thus, the pecten fine structure was likely acting as an effective comb with non-smooth teeth for the transport and capture of odorant molecules.


scorpion pectines fluid dynamics odor capture fine structure biomimetic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Derby C D, Kozma M T, Senatore A, Schmidt M. Molecular mechanisms of reception and perireception in crustacean chemoreception: A comparative review. Chemical Senses, 2016, 41, 381–398.CrossRefGoogle Scholar
  2. [2]
    Hansson B S, Stensmyr M C. Evolution of insect olfaction. Neuron, 2011, 72, 698–711.CrossRefGoogle Scholar
  3. [3]
    Martin J P, Aaron B, Dacks A M, Reisenman C E, Riffell J A, Hong L, Hildebrand J G. The neurobiology of insect olfaction: Sensory processing in a comparative context. Progress in Neurobiology, 2011, 95, 427–447.CrossRefGoogle Scholar
  4. [4]
    Szyszka P, Galizia C G. Handbook of olfaction and gustation. Olfaction in Insects, John Wiley & Sons, Inc, Hoboken, USA, 2015, 531–546.Google Scholar
  5. [5]
    Kaissling K E, Thorson J. Insect Olfactory Sensilla: Structural, Chemical and Electrical Aspects of the Functional Organisation, Elsevier/North-Holland Biomedical Press, New York, USA, 1980.Google Scholar
  6. [6]
    Steinbrecht R A. Pore structures in insect olfactory sensilla: A review of data and concepts. International Journal of Insect Morphology & Embryology, 1997, 26, 229–245.CrossRefGoogle Scholar
  7. [7]
    Hallberg E, Hansson B S. Arthropod sensilla: Morphology and phylogenetic considerations. Microscopy Research & Technique, 1999, 47, 428–439.CrossRefGoogle Scholar
  8. [8]
    Wolf H. Scorpion feet smell: Chemosensory organs in arthropods. ChemoSense, 2013, 15, 3–9.Google Scholar
  9. [9]
    Koehl M A. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chemical Senses, 2006, 31, 93–105.CrossRefGoogle Scholar
  10. [10]
    Vickers N J. Mechanisms of animal navigation in odor plumes. The Biological Bulletin, 2000, 198, 203–212.CrossRefGoogle Scholar
  11. [11]
    Koehl M A R. Transitions in function at low Reynolds number: hair-bearing animal appendages. Mathematical Methods in the Applied Sciences, 2001, 24, 1523–1532.CrossRefGoogle Scholar
  12. [12]
    Koehl M A R, Moore P A. Lobster sniffing: Antennule design and hydrodynamic filtering of information in an odor plume. Science, 2001, 294, 1948–1951.CrossRefGoogle Scholar
  13. [13]
    Koehl M A R. Hydrodynamics of sniffing by crustaceans. In: Breithaupt T, Thiel M, eds., Chemical Communication in Crustaceans, Springer, New York, USA, 2010, 85–102.CrossRefGoogle Scholar
  14. [14]
    Webster D R, Weissburg M J. The hydrodynamics of chemical cues among aquatic organisms. Advances in Mechanics, 2010, 41, 73–90.MATHGoogle Scholar
  15. [15]
    Willis M A, Avondet J L, Zheng E. The role of vision in odor-plume tracking by walking and flying insects. Journal of Experimental Biology, 2011, 214, 4121–4132.CrossRefGoogle Scholar
  16. [16]
    Willis M A, Avondet J L, Finnell A S. Effects of altering flow and odor information on plume tracking behavior in walking cockroaches, Periplaneta americana (L.). The Journal of Experimental Biology, 2008, 211, 2317–2326.CrossRefGoogle Scholar
  17. [17]
    Willis M A, Avondet J L. Odor-modulated orientation in walking male cockroachen Periplaneta americana, and the effects of odor plumes of different structure. The Journal of Experimental Biology, 2005, 208, 721–735.CrossRefGoogle Scholar
  18. [18]
    Wolf H, Harzsch S. Serotonin-immunoreactive neurons inscorpion pectine neuropils: Similarities to insect and crustacean primary olfactory centres? Zoology, 2012, 115, 151–159.CrossRefGoogle Scholar
  19. [19]
    Wolf H. The pectine organs of the scorpion, Vaejovis spinigerus: Structure and (glomerular) central projections. Arthropod Structure & Development, 2008, 37, 67–80.CrossRefGoogle Scholar
  20. [20]
    Waldrop L D, Koehl M A. Do terrestrial hermit crabs sniff? Air flow and odorant capture by flicking antennules. Journal of the Royal Society Interface, 2016, 13, 20150850.CrossRefGoogle Scholar
  21. [21]
    Wolf H. Structure and Evolution of Invertebrate Nervous Systems, Oxford University Press, London, UK, 2016.Google Scholar
  22. [22]
    Gaffin D D, Wennstrom K L, Brownell P H. Water detection in the desert sand scorpion, Paruroctonus mesaensis (Scorpionida, Vaejovidae). Journal of Comparative Physiology A, 1992, 170, 623–629.CrossRefGoogle Scholar
  23. [23]
    Gaffin D D, Brownell P H. Evidence of chemical signaling in the sand scorpion, Paruroctonus mesaensis (Scorpionida: Vaejovida). Ethology, 1992, 91, 59–69.CrossRefGoogle Scholar
  24. [24]
    Brownell, Philip H. Glomerular cytoarchitectures in chemosensory systems of arachnids. Annals of the New York Academy of Sciences, 1998, 855, 502–507.CrossRefGoogle Scholar
  25. [25]
    Gaffin D D, Brownell H P. Response properties of chemosensory peg sensilla on the pectines of scorpions. Journal of Comparative Physiology A, 1997, 181, 291–300.CrossRefGoogle Scholar
  26. [26]
    Kladt N, Wolf H, Heinzel H G. Mechanoreception by cuticular sensilla on the pectines of the scorpion Pandinus cavimanus. Journal of Comparative Physiology A, 2007, 193, 1033–1043.CrossRefGoogle Scholar
  27. [27]
    Knowlton E D, Gaffin D D. A new approach to examining scorpion peg sensilla: The mineral oil flood technique. Journal of Arachnology, 2011, 37, 379–82.CrossRefGoogle Scholar
  28. [28]
    Foelix R F, J S. The fine structure of scorpion sensory organs. II. Tarsal sensilla. Bulletin of the British Arachnological Society, 1983, 6, 53–67.Google Scholar
  29. [29]
    Gaffin D D, Brownell H P. Electrophysiological evidence of synaptic interactions within chemosensory sensilla of scorpion pectines. Journal of Comparative Physiology A, 1997, 181, 301–307.CrossRefGoogle Scholar
  30. [30]
    Volkova T, Zeidis I, Witte H, Schmidt M, Zimmermann K. Analysis of the vibrissa parametric resonance causing a signal amplification during whisking behaviour. Journal of Bionic Engineering, 2016, 13, 312–323.CrossRefGoogle Scholar
  31. [31]
    Bian Y, Zhang Y, Xia X. Design and fabrication of a multi-electrode metalcore piezoelectric fiber and its application as an airflow sensor. Journal of Bionic Engineering, 2016, 13, 416–25.CrossRefGoogle Scholar
  32. [32]
    Chatterjee D, Biswas G. Dynamic behavior of flow around rows of square cylinders kept in staggered arrangement. Journal of Wind Engineering & Industrial Aerodynamics, 2014, 136, 1–11.CrossRefGoogle Scholar
  33. [33]
    Kumar S R, Sharma A, Agrawal A. Simulation of flow around a row of square cylinders. Journal of Fluid Mechanics, 2008, 606, 369–397.CrossRefGoogle Scholar
  34. [34]
    Chatterjee D, Biswas G, Amiroudine S. Mixed convection heat transfer from an in-line row of square cylinders in cross-flow at low Reynolds number. Numerical Heat Transfer Applications, 2012, 61, 891–911.Google Scholar
  35. [35]
    Han Z, Zhang J, Ge C, Wen L, Ren L. Erosion resistance of bionic functional surfaces inspired from desert scorpions. Langmuir the ACS Journal of Surfaces & Colloids, 2012, 28, 2914–2921.CrossRefGoogle Scholar
  36. [36]
    Mineo M F, Claro K D. Mechanoreceptive function of pectines in the Brazilian yellow scorpion Tityus serrulatus: Perception of substrate-borne vibrations and prey detection. Acta Ethologica, 2006, 9, 79–85.CrossRefGoogle Scholar
  37. [37]
    Bruyne M D, Baker T C. Odor detection in insects: Volatile codes. Journal of Chemical Ecology, 2008, 34, 882–897.CrossRefGoogle Scholar
  38. [38]
    Catalá S, Sachetto C, Moreno M, Rosales R, Salazarschetrino P M, Gorla D. Antennal phenotype of Triatoma dimidiata populations and its relationship with species of phyllosoma and protracta complexes. Journal of Medical Entomology, 2005, 42, 719–725.CrossRefGoogle Scholar
  39. [39]
    Ren L L, Wu Y, Shi J, Zhang L, Luo Y Q. Antenna morphology and sensilla ultrastructure of Tetrigus lewisi Candèze (Coleoptera: Elateridae). Micron, 2014, 60, 29–38.CrossRefGoogle Scholar
  40. [40]
    Hallberg E, Skog M. Chemosensory Sensilla in Crustaceans, Springer, New York, USA, 2011.Google Scholar
  41. [41]
    Merivee E, Ploomi A, Rahi M, Bresciani J, Ravn H P, Luik A, Sammelselg V. Antennal sensilla of the ground beetle Bembidion properans Steph. (Coleoptera, Carabidae). Micron, 2002, 33, 429–440.CrossRefGoogle Scholar
  42. [42]
    Rebora M, Dell’Otto A, Rybak J, Piersanti S, Gaino E, Hansson B S. The antennal lobe of Libellula depressa (Odonata, Libellulidae). Zoology, 2013, 116, 205–214.CrossRefGoogle Scholar
  43. [43]
    Koehl M A. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chemical Senses, 2006, 31, 93–105.CrossRefGoogle Scholar
  44. [44]
    Mellon D F, Reidenbach M A. Fluid Mechanical Problems in Crustacean Active Chemoreception, Springer, Vienna, Austria, 2012.CrossRefGoogle Scholar
  45. [45]
    Waldrop L D, Miller L A, Khatri S. A tale of two antennules: The performance of crab odour-capture organs in air and water. Journal of the Royal Society, Interface, 2016, 13, 1–9.Google Scholar
  46. [46]
    Daly K C, Kalwar F, Hatfield M, Staudacher E, Bradley S P. Odor detection it Manduca sexta is optimized when odorstimuli are pulsed at a frequency matching the wing beat during flight. PLOS ONE, 2013, 8, e81863.CrossRefGoogle Scholar
  47. [47]
    Loudon C, Koehl M A. Sniffing by a silkworm moth: Wing fanning enhances air penetration through and pheromone interception by antennae. Journal of Experimental Biology, 2000, 203, 2977–2990.Google Scholar
  48. [48]
    Sumner D, Price S J, Païdoussis M P. Flow-pattern identification for two staggered circular cylinders in cross-flow. Journal of Fluid Mechanics, 2000, 411, 263–303.CrossRefGoogle Scholar
  49. [49]
    Valencia A, Cid M. Turbulent unsteady flow and heat transfer in channels with periodically mounted square bars. International Journal of Heat & Mass Transfer, 2002, 45, 1661–1673.CrossRefGoogle Scholar
  50. [50]
    Sewatkar C M, Sharma A, Agrawal A. On the effect of Reynolds number for flow around a row of square cylinders. Physics of Fluids, 2009, 21, 083602.CrossRefGoogle Scholar

Copyright information

© Jilin University 2017

Authors and Affiliations

  • Zhiwu Han
    • 1
  • Daobing Chen
    • 1
  • Ka Zhang
    • 1
  • Honglie Song
    • 1
  • Kejun Wang
    • 1
  • Shichao Niu
    • 1
  • Junqiu Zhang
    • 1
  • Luquan Ren
    • 1
  1. 1.Key Laboratory for Bionic EngineeringMinistry of Education, Jilin UniversityChangchunChina

Personalised recommendations