Journal of Bionic Engineering

, Volume 13, Issue 2, pp 181–199 | Cite as

Bioinspired dry adhesive materials and their application in robotics: A review

Article

Abstract

Dry adhesives inspired from climbing animals, such as geckos and spiders, rely on van der Waals forces to attach to the opposing surface. Biological fibrillar dry adhesives have a hierarchical structure closely resembling a tree: the surface of the skin on the animal’s feet is covered in arrays of slender micro-fibrils, each of which supports arrays of fibrils in submicron dimensions. These nano-meter size fibrils can conform closely to the opposing surfaces to induce van der Waals interaction. Bioinspired dry adhesives have been developed in research laboratories for more than a decade. To mimic the biological fibrillar adhesives, fibrillar structures have been prepared using a variety of materials and geometrical arrangements. In this review article, the mechanism and selected fabrication methods of fibrillar adhesives are summarized for future reference in adhesive development. Robotic applications of these bioinspired adhesives are also introduced in this article. Various successful applications of bioinspired fibrillar adhesives can shed light on developing smart adhesives for use in automation.

Keyword

bioinspired gecko adhesive van der Waals forces biomimetic climbing robot bioinspired tape 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aristotle. The History of Animals, translated by D’Arcy Wentworth Thompson, n.d.Google Scholar
  2. [2]
    Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T W, Fearing R, Full R J. Adhesive force of a single gecko foot-hair. Nature, 2000, 405, 681–685.CrossRefGoogle Scholar
  3. [3]
    Autumn K, Peattie A M. Mechanisms of adhesion in geckos. Integrative and Comparative Biology, 2002, 42, 1081–1090.CrossRefGoogle Scholar
  4. [4]
    Autumn K, Sitti M, Liang Y A, Peattie A M, Hansen W R, Sponberg S, Kenny T W, Fearing R, Israelachvili J N, Full R J. Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12252–12256.CrossRefGoogle Scholar
  5. [5]
    Gao H, Wang X, Yao H, Gorb S, Arzt E. Mechanics of hierarchical adhesion structures of geckos. Mechanics of Materials, 2005, 37, 275–285.CrossRefGoogle Scholar
  6. [6]
    Bhushan B, Peressadko A G, Kim T W. Adhesion analysis of two-level hierarchical morphology in natural attachment systems for “smart adhesion”. Journal of Adhesion Science and Technology, 2006, 20, 1475–1491.CrossRefGoogle Scholar
  7. [7]
    Yao H, Gao H. Mechanics of robust and releasable adhesion in biology: Bottom-up designed hierarchical structures of gecko. Journal of the Mechanics and Physics of Solids, 2006, 54, 1120–1146.MATHCrossRefGoogle Scholar
  8. [8]
    Autumn K, Majidi C, Groff R E, Dittmore A, Fearing R. Effective elastic modulus of isolated gecko setal arrays. The Journal of Experimental Biology, 2006, 209, 3558–3568.CrossRefGoogle Scholar
  9. [9]
    Kesel A B, Martin A, Seidl T. Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. Journal of Experimental Biology, 2003, 206, 2733–2738.CrossRefGoogle Scholar
  10. [10]
    Kesel A B, Martin A, Seidl T. Getting a grip on spider attachment: An AFM approach to microstructure adhesion in arthropods. Smart Materials and Structures, 2004, 13, 512–518.CrossRefGoogle Scholar
  11. [11]
    Niederegger S, Gorb S N. Friction and adhesion in the tarsal and metatarsal scopulae of spiders. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2006, 192, 1223–1232.CrossRefGoogle Scholar
  12. [12]
    Seidl T, Vidoni R. Spider ecophysiology. In: Nentwig W, ed., Spider Ecophysiology, Springer-Verlag Berlin Heidelberg, 2013, 463–473.CrossRefGoogle Scholar
  13. [13]
    Gorb S N, Sinha M, Peressadko A, Daltorio K A, Quinn R D. Insects did it first: A micropatterned adhesive tape for robotic applications. Bioinspiration & Biomimetics, 2007, 2, S117–S125.CrossRefGoogle Scholar
  14. [14]
    Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10603–10606.CrossRefGoogle Scholar
  15. [15]
    Autumn K. Properties, principles, and parameters of the gecko adhesive system. In: Smith A M, Callow J A, eds., Biological Adhesives, Springer Berlin Heidelberg, 2006, 225–256.CrossRefGoogle Scholar
  16. [16]
    Autumn K. Gecko adhesion: Structure, function, and applications. MRS Bulletin, 2007, 32, 473–478.CrossRefGoogle Scholar
  17. [17]
    Shah G J, Sitti M. Modeling and design of biomimetic adhesives inspired by gecko foot-hairs. 2004 IEEE International Conference on Robotics and Biomimetics, 2004, 873–878.Google Scholar
  18. [18]
    Yao H, Gao H. Mechanical principles of robust and releasable adhesion of gecko. Journal of Adhesion Science and Technology, 2007, 21, 1185–1212.CrossRefGoogle Scholar
  19. [19]
    Gillies A G, Henry A, Lin H, Ren A, Shiuan K, Fearing R S, Full R J. Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces. Journal of Experimental Biology, 2014, 217, 283–289.CrossRefGoogle Scholar
  20. [20]
    Autumn K, Hansen W. Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2006, 192, 1205–1212.CrossRefGoogle Scholar
  21. [21]
    Bonser R, Purslow P. The Young’s modulus of feather keratin. Journal of Experimental Biology, 1995, 198, 1029.Google Scholar
  22. [22]
    Greiner C, Spolenak R, Arzt E. Adhesion design maps for fibrillar adhesives: The effect of shape. Acta Biomaterialia, 2009, 5, 597–606.CrossRefGoogle Scholar
  23. [23]
    Persson B N J. On the mechanism of adhesion in biological systems. Journal of Chemical Physics, 2003, 118, 7614–7621.CrossRefGoogle Scholar
  24. [24]
    Gasparetto A, Seidl T, Vidoni R. A mechanical model for the adhesion of spiders to nominally flat surfaces. Journal of Bionic Engineering, 2009, 6, 135–142.CrossRefGoogle Scholar
  25. [25]
    Hansen W R, Autumn K. Evidence for self-cleaning in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 385–389.CrossRefGoogle Scholar
  26. [26]
    Lee J, Fearing R S. Contact self-cleaning of synthetic gecko adhesive from polymer microfibers. Langmuir, 2008, 24, 10587–10591.CrossRefGoogle Scholar
  27. [27]
    Mengüç Y, Röhrig M, Abusomwan U, Hölscher H, Sitti M. Staying sticky: Contact self-cleaning of gecko-inspired adhesives. Journal of the Royal Society Interface, 2014, 11, 20131205.CrossRefGoogle Scholar
  28. [28]
    Russell A P. Integrative functional morphology of the gekkotan adhesive system (reptilia: gekkota). Integrative and Comparative Biology, 2002, 42, 1154–1163.CrossRefGoogle Scholar
  29. [29]
    Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M. Frictional adhesion: A new angle on gecko attachment. Journal of Experimental Biology, 2006, 209, 3569–3579.CrossRefGoogle Scholar
  30. [30]
    Autumn K, Hsieh S T, Dudek D M, Chen J, Chitaphan C, Full R J. Dynamics of geckos running vertically. Journal of Experimental Biology, 2006, 209, 260–272.CrossRefGoogle Scholar
  31. [31]
    Sameoto D, Menon C. Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives. Smart Materials and Structures, 2010, 19, 103001.CrossRefGoogle Scholar
  32. [32]
    Zhou M, Pesika N, Zeng H, Tian Y, Israelachvili J. Recent advances in gecko adhesion and friction mechanisms and development of gecko-inspired dry adhesive surfaces. Friction, 2013, 1, 114–129.CrossRefGoogle Scholar
  33. [33]
    Pattantyus-Abraham A, Krahn J, Menon C. Recent advances in nanostructured biomimetic dry adhesives. Frontiers in Bioengineering and Biotechnology, 2013, 1, 1–10.CrossRefGoogle Scholar
  34. [35]
    Sitti M, Fearing R S. Synthetic gecko foot-hair micro / nano-structures as dry adhesives. Journal of Adhesion Science and Technology, 2003, 18, 1055–1074.CrossRefGoogle Scholar
  35. [36]
    Glassmaker N J, Himeno T, Hui C Y, Kim J. Design of biomimetic fibrillar interfaces: I. Making contact. Journal of the Royal Society Interface, 2004, 1, 23–33.CrossRefGoogle Scholar
  36. [37]
    Murphy M P, Aksak B, Sitti M. Gecko-inspired directional and controllable adhesion. Small, 2009, 5, 170–175.CrossRefGoogle Scholar
  37. [38]
    Sameoto D, Menon C. A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives. Journal of Micromechanics and Microengineering, 2009, 19, 115002.CrossRefGoogle Scholar
  38. [39]
    Sameoto D, Menon C. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives. Journal of Micromechanics and Microengineering, 2010, 20, 115037.CrossRefGoogle Scholar
  39. [40]
    Parness A, Soto D, Esparza N, Gravish N, Wilkinson M, Autumn K, Cutkosky M. A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime. Journal of the Royal Society Interface, 2009, 6, 1223–1232.CrossRefGoogle Scholar
  40. [41]
    Kim S, Sitti M. Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Applied Physics Letters, 2006, 89, 261911.CrossRefGoogle Scholar
  41. [42]
    Gorb S, Varenberg M, Peressadko A, Tuma J. Biomimetic mushroom-shaped fibrillar adhesive microstructure. Journal of the Royal Society Interface, 2007, 4, 271–275.CrossRefGoogle Scholar
  42. [43]
    Kim T, Jeong H E, Suh K Y, Lee H H. Stooped nanohairs: Geometry-controllable, unidirectional, reversible, and robust gecko-like dry adhesive. Advanced Materials, 2009, 21, 2276–2281.CrossRefGoogle Scholar
  43. [44]
    Lee J, Majidi C, Schubert B, Fearing R S. Sliding-induced adhesion of stiff polymer microfibre arrays. I. Macroscale behaviour. Journal of the Royal Society Interface, 2008, 5, 835–844.CrossRefGoogle Scholar
  44. [45]
    Xue L, Kovalev A, Thöle F, Rengarajan G T, Steinhart M, Gorb S N. Tailoring normal adhesion of arrays of thermoplastic, spring-like polymer nanorods by shaping nanorod tips. Langmuir, 2012, 28, 10781–10788.CrossRefGoogle Scholar
  45. [46]
    Qu L, Dai L, Stone M, Xia Z, Wang Z L. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science, 2008, 322, 238–242.CrossRefGoogle Scholar
  46. [47]
    Carbone G, Pierro E, Gorb S N. Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces. Soft Matter, 2011, 7, 5545–5552.CrossRefGoogle Scholar
  47. [48]
    Heepe L, Varenberg M, Itovich Y, Gorb S N. Suction component in adhesion of mushroom-shaped microstructure. Journal of the Royal Society Interface, 2011, 8, 585–589.CrossRefGoogle Scholar
  48. [49]
    Sameoto D, Menon C. Direct molding of dry adhesives with anisotropic peel strength using an offset lift-off photoresist mold. Journal of Micromechanics and Microengineering, 2009, 19, 115026.CrossRefGoogle Scholar
  49. [50]
    Spuskanyuk A V, McMeeking R M, Deshpande V S, Arzt E. The effect of shape on the adhesion of fibrillar surfaces. Acta Biomaterialia, 2008, 4, 1669–1676.CrossRefGoogle Scholar
  50. [51]
    Sameoto D, Ferguson B. Robust large-area synthetic dry adhesives. Journal of Adhesion Science and Technology, 2014, 28, 337–353.CrossRefGoogle Scholar
  51. [52]
    Schubert B, Lee J, Majidi C, Fearing R S. Sliding-induced adhesion of stiff polymer microfibre arrays. II. Microscale behaviour. Journal of the Royal Society Interface, 2008, 5, 845–853.CrossRefGoogle Scholar
  52. [53]
    Li Y, Ng H W, Gates B D, Menon C. Material versatility using replica molding for large-scale fabrication of high aspect-ratio, high density arrays of nano-pillars. Nanotechnology, 2014, 25, 285303.CrossRefGoogle Scholar
  53. [54]
    Ge L, Sethi S, Ci L, Ajayan P M, Dhinojwala A. Carbon nanotube-based synthetic gecko tapes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10792–10795.CrossRefGoogle Scholar
  54. [55]
    Li Y, Zhang H, Yao Y, Li T, Zhang Y, Li Q, Dai Z. Transfer of vertically aligned carbon nanotube arrays onto flexible substrates for gecko-inspired dry adhesive application. RSC Advances, 2015, 5, 46749–46759.CrossRefGoogle Scholar
  55. [56]
    Gregoratti L, Goldon A, Trygub O, Marazzi M, Tormen M, Grenci G, Dalzilio S, Vidoni R, Gasparetto A. Large gecko mimetic tapes as new joining technology. Proceedings of the 12th International Symposium on Materials in the Space Environment, Noordwijk, The Netherlands, 2012, 7.Google Scholar
  56. [57]
    Chen B, Zhong G, Oppenheimer P G, Zhang C, Tornatzky H, Esconjauregui S, Hofmann S, Robertson J. Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics. ACS Applied Materials & Interfaces, 2015, 7, 3626–3632.CrossRefGoogle Scholar
  57. [58]
    Shim H W, Kuppers J D, Huang H. Strong friction of silicon carbide nanowire films. Nanotechnology, 2009, 20, 025704.CrossRefGoogle Scholar
  58. [59]
    Ko H, Lee J, Schubert B E, Chueh Y, Leu P W, Fearing R S, Javey A. Hybrid core-shell nanowire forests as self-selective chemical connectors. Nano Letters, 2009, 9, 2054–2058.CrossRefGoogle Scholar
  59. [60]
    Kwak M K, Jeong H-E, Suh K Y. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Advanced Materials, 2011, 23, 3949–3953.CrossRefGoogle Scholar
  60. [61]
    Takahashi K, Berengueres J O L, Obata K J, Saito S. Geckos’ foot hair structure and their ability to hang from rough surfaces and move quickly. International Journal of Adhesion and Adhesives, 2006, 26, 639–643.CrossRefGoogle Scholar
  61. [62]
    Greiner C, Arzt E, del Campo A. Hierarchical gecko-like adhesives. Advanced Materials, 2009, 21, 479–482.CrossRefGoogle Scholar
  62. [63]
    Murphy M P, Kim S, Sitti M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Applied Materials & Interfaces, 2009, 1, 849–855.CrossRefGoogle Scholar
  63. [64]
    Lee D Y, Lee D H, Lee S G, Cho K. Hierarchical gecko-inspired nanohairs with a high aspect ratio induced by nanoyielding. Soft Matter, 2012, 8, 4905.CrossRefGoogle Scholar
  64. [65]
    Röhrig M, Thiel M, Worgull M, Hölscher H. 3D direct laser writing of nano- and microstructured hirarchical gecko-mimicking surfaces. Small, 2012, 8, 3009–3015.CrossRefGoogle Scholar
  65. [66]
    Lee H, Bhushan B. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces. Journal of Colloid and Interface Science, 2012, 372, 231–238.CrossRefGoogle Scholar
  66. [67]
    Ho A Y Y, Yeo L P, Lam Y C, Rodríguez I. Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae. ACS Nano, 2011, 5, 1897–1906.CrossRefGoogle Scholar
  67. [68]
    Noderer W L, Shen L, Vajpayee S, Glassmaker N J, Jagota a., Hui C Y. Enhanced adhesion and compliance of film-terminated fibrillar surfaces. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463, 2631–2654.CrossRefGoogle Scholar
  68. [69]
    Izadi H, Golmakani M, Penlidis A. Enhanced adhesion and friction by electrostatic interactions of double-level Teflon nanopillars. Soft Matter, 2013, 9, 1985–1996.CrossRefGoogle Scholar
  69. [70]
    Asbeck A, Dastoor S, Parness A, Fullerton L, Esparza N, Soto D, Heyneman B, Cutkosky M. Climbing rough vertical surfaces with hierarchical directional adhesion. 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, 2675–2680.Google Scholar
  70. [71]
    Izadi H, Zhao B, Han Y, McManus N, Penlidis A. Teflon hierarchical nanopillars with dry and wet adhesive properties. Journal of Polymer Science Part B: Polymer Physics, 2012, 50, 846–851.CrossRefGoogle Scholar
  71. [72]
    Jeong H E, Lee J K, Kim H N, Moon S H, Suh K Y. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5639–5644.CrossRefGoogle Scholar
  72. [73]
    Kim T W, Bhushan B. Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. Journal of Adhesion Science and Technology, 2007, 21, 1–20.CrossRefGoogle Scholar
  73. [74]
    Li Y, Gates B D, Menon C. Improved adhesion and compliancy of hierarchical fibrillar adhesives. ACS Applied Materials & Interfaces, 2015, 7, 16410–16417.CrossRefGoogle Scholar
  74. [75]
    Rong Z, Zhou Y, Chen B, Robertson J, Federle W, Hofmann S, Steiner U, goldberg-Oppenheimer P. Bio-inspired hierarchical polymer fiber-carbon nanotube adhesives. Advanced Materials, 2014, 26, 1456–1461.CrossRefGoogle Scholar
  75. [76]
    Zhang C, Zhou J H W, Sameoto D, Zhang X, Li Y, Ng H W, Menor C, Gates B D. Determining adhesion of nonuniform arrays of fibrils. Journal of Adhesion Science and Technology, 2014, 28, 320–336.CrossRefGoogle Scholar
  76. [77]
    Li Y, Zhang C, Zhou J H-W, Menon C, Gates B D. Measuring shear-induced adhesion of gecko-inspired fibrillar arrays using scanning probe techniques. Macromolecular Reaction Engineering, 2013, 7, 638–645.CrossRefGoogle Scholar
  77. [78]
    Li Y, Zhou J H-W, Zhang C, Menon C, Gates B D. Harnessing tunable scanning probe techniques to measure shear enhanced adhesion of gecko-inspired fibrillar arrays. ACS Applied Materials & Interfaces, 2015, 7, 2340–2348.CrossRefGoogle Scholar
  78. [79]
    Lee J, Bush B, Maboudian R, Fearing R S. Gecko-inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface. Langmuir, 2009, 25, 12449–12453.CrossRefGoogle Scholar
  79. [80]
    Berengueres J, Urago M, Saito S, Tadakuma K, Meguro H. Gecko inspired electrostatic chuck. 2006 IEEE International Conference on Robotics and Biomimetics, Kunming, China, 2006, 1018–1023.Google Scholar
  80. [81]
    Krahn J, Menon C. Electro-dry-adhesion. Langmuir, 2012, 28, 5438–5443.CrossRefGoogle Scholar
  81. [82]
    Krahn J M, Pattantyus-Abraham A G, Menon C. Polymeric electro-dry-adhesives for use on conducting surfaces. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2013, 228, 109–114.CrossRefGoogle Scholar
  82. [83]
    Ruffatto D, Parness A, Spenko M. Improving controllable adhesion on both rough and smooth surfaces with a hybrib electrostatic/gecko-like adhesive. Journal of The Royal Society Interface, 2014, 11, 20131089.CrossRefGoogle Scholar
  83. [84]
    Krahn J, Menon C. Dry adhesives with sensing features. Smart Materials and Structures, 2013, 22, 085010.CrossRefGoogle Scholar
  84. [85]
    Sitti M, Cusick B, Aksak B, Nese A, Lee H, Dong H, Kowalewski T, Matyjaszewski K. Dangling chain elastomers as repeatable fibrillar adhesives. ACS Applied Materials & Interfaces, 2009, 1, 2277–2287.CrossRefGoogle Scholar
  85. [86]
    Lee H, Lee B P, Messersmith P B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature, 2007, 448, 338–341.CrossRefGoogle Scholar
  86. [87]
    Krahn J, Sameoto D, Menon C. Controllable biomimetic adhesion using embedded phase change material. Smart Materials and Structures, 2011, 20, 015014.CrossRefGoogle Scholar
  87. [88]
    Frensemeier M, Kaiser J S, Frick C P, Schneider A S, Arzt E, Fertig R S, Kroner E. Temperature-induced switchable adhesion using nickel-titanium-polydimethylsiloxane hybrid surfaces. Advanced Functional Materials, 2015, 25, 3013–3021.CrossRefGoogle Scholar
  88. [89]
    Krahn J, Bovero E, Menon C. Magnetic field switchable dry adhesives. ACS Applied aterials and Interfacces, 2015, 7, 2214–2222.Google Scholar
  89. [90]
    Gillies A G, Kwak J, Fearing R S. Controllable particle adhesion with a magnetically actuated synthetic gecko adhesive. Advanced Functional Materials, 2013, 23, 3256–3261.CrossRefGoogle Scholar
  90. [91]
    Díaz Téllez J P, Harirchian-Saei S, Li Y, Menon C. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis. Smart Materials and Structures, 2013, 22, 105031.CrossRefGoogle Scholar
  91. [92]
    Tannouri P, Arefeh K M, Krahn J M, Beaupre S L, Menon C, Branda N R. A photoresponsive biomimetic dry adhesive based on doped PDMS microstructures. Chemistry of Materials, 2014, 26, 4330–4333.CrossRefGoogle Scholar
  92. [93]
    Mahdavi A, Ferreira L, Sundback C, Nichol J W, Chan E P, Carter D J D, Bettinger C, Patanavanich S, Chignozha L, Ben-Joseph E, Galakatos A, Pryor H, Pomerantseva I, Masiakos P T, Faquin W, Zumbuehi a, Hong S, Borenstein J, Vacanti J, Langer R, Karp J M. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2307–2312.CrossRefGoogle Scholar
  93. [94]
    Sahay R, Low H Y, Baji A, Shaohui F, Wood K L. A state-of-the-art review and analysis on the design of dry adhesion materials for applications such as climbing Micro-robots. RSC Advances, 2015, 5, 50821–50832.CrossRefGoogle Scholar
  94. [95]
    Menon C, Murphy M, Sitti M. Gecko inspired surface climbing robots. 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 2004, 431–436.Google Scholar
  95. [96]
    Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky M R. Smooth vertical surface climbing with directional adhesion. IEEE Transactions on Robotics, 2008, 24, 65–74.CrossRefGoogle Scholar
  96. [97]
    Hawkes E W, Ulmen J, Esparza N, Cutkosky M R. Scaling walls: Applying dry adhesives to the real world. 2011 IEEE International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 2011, 5100–5106.Google Scholar
  97. [98]
    Hawkes E W, Member S, Eason E V, Member S, Asbeck A T, Cutkosky M R. The gecko’s toe: Scaling directional adhesives for climbing applications. IEEE/ASME Transactions on Mechatronics, 2013, 18, 518–526.CrossRefGoogle Scholar
  98. [99]
    Yu Z, Wang Z, Liu R, Wang P, Dai Z. Stable gait planning for a gecko-inspired robot to climb on vertical surface. 2013 IEEE International Conference on Mechatronics Automation, Takamatsu, Japan, 2013, 307–311.Google Scholar
  99. [100]
    Dai Z, Zhang H, Li H. Biomimetics of gecko locomotion: From biology to engineering. ASME/IFToMM Internation Conference on Reconfigurable Mechanisms and Robots, London, UK, 2009, 464–468.Google Scholar
  100. [101]
    Dai Z, Sun J. A biomimetic study of discontinous-constraint metamorphic mechanism for gecko-like robot. Journal of Bionic Engineering, 2007, 4, 91–95.CrossRefGoogle Scholar
  101. [102]
    Yu Z, Chen J, Dai Z. Study on Forces Simulation of gecko robot moving on the ceiling. In: Zhang T, ed., Mechanical Engineering and Technology, Springer Berlin Heidelberg, 2012, 81–88.CrossRefGoogle Scholar
  102. [103]
    Dai Z, Wang Z, Ji A. Dynamics of gecko locomotion: A force-measuring array to measure 3D reaction forces. Journal of Experimental Biology, 2011, 214, 703–708.CrossRefGoogle Scholar
  103. [104]
    Murphy M P, Tso W, Tanzini M, Sitti M. Waalbot: An agile small-scale wall-climbing robot utilizing dry elastomer adhesives, IEE/ASME Tansaction on Mechatronics, 2007, 12, 330–338.CrossRefGoogle Scholar
  104. [105]
    Unver O, Murphy M P, Sitti M Geckobot and Waalbot: Small-scale wall climbing robots. AIAA 5th Aviation, Technology, Integration, and Operations Conference, Arlington, Virginia, USA, 2005.Google Scholar
  105. [106]
    Murphy M P, Kute C, Menguc Y, Sitti M. Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives. The International Journal of Robotics Research, 2010, 30, 118–133.CrossRefGoogle Scholar
  106. [107]
    Peyvandi A, Soroushian P, Lu J. A new self-loading locomotion mechanism for wall climbing robots employing biomimetic adhesives. Journal of Bionic Engineering, 2013, 10, 12–18.CrossRefGoogle Scholar
  107. [108]
    Unver O, Sitti M. Tankbot: A palm-size, tank-like climbing robot using soft elastomer adhesive treads. The International Journal of Robotics Research, 2010, 29, 1761–1777.CrossRefGoogle Scholar
  108. [109]
    Gittens C, Goundar D, Law D, Minor J, Menon C. TBCP-I: Towards the development of a timing belt based climbing platform. IEEE/RA/EMB/IFMBE International Conference on Applied Bionics and Biomechanics, Venice, Italy, 2010.Google Scholar
  109. [110]
    Krahn J, Liu Y, Sadeghi A, Menon C. A tailless timing belt platform (TBCP-II) utilizing dry adhesives with mushroom caps. Smart Materials and Structures, 2011, 20, 115021.CrossRefGoogle Scholar
  110. [111]
    Seo T, Sitti M. Tank-like module-based climbing robot using passive compliant joints. IEEE/ASME Transactions on Mechatronics, 2013, 18, 397–408.CrossRefGoogle Scholar
  111. [112]
    Menon C, Li Y, Sameoto D, Martens C. Abigaille-I: Towards the development of a spider-inspired climbing robot for space use. Proceedings of the 2nd IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, USA, 2008, 384–389.Google Scholar
  112. [113]
    Li Y, Ahmed A, Sameoto D, Menon C. Abigaille II: Toward the development of a spider-inspired climbing robot. Robotica, 2012, 30, 79–89.CrossRefGoogle Scholar
  113. [114]
    Henrey M, Ahmed A, Boscariol P, Shannon L, Menon C. Abigaille-III: A versatile, bioinspired hexapod for scaling smooth vertical surfaces. Journal of Bionic Engineering, 2014, 11, 1–17.CrossRefGoogle Scholar
  114. [115]
    Kalouche S, Wiltsie N, Su H, Parness A. Inchworm style gecko adhesive climbing robot. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), Chicago, IL, USA, 2014, 2319–2324.CrossRefGoogle Scholar
  115. [116]
    Hawkes E W, Christensen D L, Cutkosky M R. Vertical dry adhesive climbing with a 100× bodyweight payload. 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 2015, 3762–3769.Google Scholar
  116. [117]
    Zhou M, Tian Y, Sameoto D, Zhang X, Meng Y, Wen S. Controllable interfacial adhesion applied to transfer light and fragile objects by using gecko inspired mushroom-shaped pillar surface. ACS Applied Materials & Interfaces, 2013, 5, 10137–10144.CrossRefGoogle Scholar
  117. [118]
    Song S, Majidi C, Sitti M. GeckoGripper: A soft, inflatable robotic gripper using gecko-inspired elastomer micro-fiber adhesives. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 2014, 4624–4629.Google Scholar
  118. [119]
    Hawkes E W, Christensen D L, Han A K, Jiang H, Cutkosky M R. Grasping without squeezing: Shear adhesion gripper with fibrillar thin film. 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 2015, 2305–2312.Google Scholar
  119. [120]
    Hawkes E W, Jiang H, Cutkosky M R. Three-dimensional dynamic surface grasping with dry adhesion. The International Journal of Robotics Research, 2015, doi: 10.1177/0278364915584645.Google Scholar
  120. [121]
    Jiang H, Hawkes E W, Arutyunov V, Tims J, Fuller C, King J P, Seubert C, Chang H L, Parness A, Cutkosky M R. Scaling controllable adhesives to grapple floating objects in space. 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 2015, 2828–2835.Google Scholar
  121. [122]
    Hawkes E W, Eason E V, Christensen D L, Cutkosky M R. Human climbing with efficiently scaled gecko-inspired dry adhesives. Journal of the Royal Society Interface, 2015, 12, doi: 10.1098/rsif.2014.0675.Google Scholar

Copyright information

© Jilin University 2016

Authors and Affiliations

  1. 1.MENRVA Research Group, School of Engineering ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations