Journal of Bionic Engineering

, Volume 12, Issue 2, pp 170–189 | Cite as

Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review

  • Shichao Niu
  • Bo Li
  • Zhengzhi Mu
  • Meng Yang
  • Junqiu Zhang
  • Zhiwu Han
  • Luquan Ren


Morpho butterfly, famous for its iridescence wing scales, has gradually evolved a diversity of functions and has attracted much attention recently. On the other hand, it is known that the wing surface of Morpho butterfly has some complex and sophisticated structures. In fact, they are composed of an alternating multilayer film system of chitin and air layers, which have different refractive indexes. More importantly, these structures can interact strongly with visible light because the feature size of the structures is in the same order of magnitude with light wavelength. It is noteworthy that it is these optical architectures that cause the excellent multifunction including structural color, antireflection, thermal response, selective vapour response, directional adhesion, superhydrophobicity and so on. This review mainly covers the excellent multifunctional features of Morpho butterfly wings with representative functional structures of multilayer film system, photonic crystal and ridges. Then, the mechanism of the structure-based optical multifunction of Morpho butterfly is analyzed. In order to facilitate mechanism analysis, the models of bionic functional structures are reported, as well as the interaction process between the multiscale structures and the external media It is concluded that these functions of Morpho butterfly wings have inevitable and corresponding regularity connection with the structural parameters and the dielectric coefficient of the filled medium. At last, the future direction and prospects of this field are briefly addressed. It is hoped that this review could be beneficial to provide some innovative inspirations and new ideas to the researchers in the fields of engineering, biomedicine, and materials science.


Morpho butterfly wing scales microstructure structure-based functions bionics 


  1. [1]
    Kasemo B. Biological surface science. Surface Science, 2002, 500, 656–677.CrossRefGoogle Scholar
  2. [2]
    Hook F, Kasemo B, Grunze M, Zauscher S. Quantitative biological surface science: Challenges and recent advances. ACS Nano, 2008, 2, 2428–2436.CrossRefGoogle Scholar
  3. [3]
    Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J, Jiang L. Directional water collection on wetted spider silk. Nature, 2010, 463, 640–643.CrossRefGoogle Scholar
  4. [4]
    Song C, Zheng Y M. Wetting-controlled strategies: From theories to bio-inspiration. Journal of Colloid and Interface Science, 2014, 427, 2–14.CrossRefGoogle Scholar
  5. [5]
    Ju J, Bai H, Zheng Y M, Zhao T Y, Fang R C, Jiang L. A multi-structural and multi-functional integrated fog collection system in cactus. Nature Communications, 2012, 3, 1247.CrossRefGoogle Scholar
  6. [6]
    Cao M Y, Ju J, Li K, Dou S X, Liu K S, Jiang L. Facile and large-scale fabrication of a cactus-inspired continuous fog collector. Advanced Functional Materials, 2014, 24, 3235–3240.CrossRefGoogle Scholar
  7. [7]
    Gao X F, Yan X, Yao X, Xu L, Zhang K, Zhang J H, Yang B, Jiang L. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Advanced Materials, 2007, 19, 2213–2217.CrossRefGoogle Scholar
  8. [8]
    Pang C, Kim T I, Bae W G, Kang D, Kim S M, Suh K Y. Bioinspired reversible interlocker using regularly arrayed high aspect-ratio polymer fibers. Advanced Materials, 2012, 24, 475–479.CrossRefGoogle Scholar
  9. [9]
    Parker A R, Lawrence C R. Water capture by a desert beetle. Nature, 2001, 414, 33–34.CrossRefGoogle Scholar
  10. [10]
    Malik F T, Clement R M, Gethin D T, Krawszik W, Parker A R. Nature’s moisture harvesters: A comparative review. Bioinspiration & Biomimetics, 2014, 9, 031002.Google Scholar
  11. [11]
    Ball P. Engineering-shark skin and other solutions. Nature, 1999, 400, 507–509.CrossRefGoogle Scholar
  12. [12]
    Bechert D W, Bruse M, Hage W. Experiments with three-dimensional riblets as an idealized model of shark skin. Experiments in Fluids, 2000, 28, 403–412.CrossRefGoogle Scholar
  13. [13]
    Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 2010, 368, 4775–4806.CrossRefGoogle Scholar
  14. [14]
    Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T W, Fearing R, Full R J. Adhesive force of a single gecko foot-hair. Nature, 2000, 405, 681–685.CrossRefGoogle Scholar
  15. [15]
    Geim A K, Dubonos S V, Grigorieva I V, Novoselov K S, Zhukov A A, Shapoval S Y. Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2003, 2, 461–463.CrossRefGoogle Scholar
  16. [16]
    Hu C C, Greaney P A. Role of seta angle and flexibility in the gecko adhesion mechanism. Journal of Applied Physics, 2014, 116, 074302.Google Scholar
  17. [17]
    Vukusic P, Sambles J R, Lawrence C R. Structural colour-colour mixing in wing scales of a butterfly. Nature, 2000, 404, 457-457.CrossRefGoogle Scholar
  18. [18]
    Sun G, Fang Y, Cong Q, Ren L Q. Anisotropism of the non-smooth surface of butterfly wing. Journal of Bionic Engineering, 2009, 6, 71–76.CrossRefGoogle Scholar
  19. [19]
    Vukusic P, Sambles J R. Photonic structures in biology. Nature, 2003, 424, 852–855.CrossRefGoogle Scholar
  20. [20]
    Blossey R. Self-cleaning surfaces-virtual realities. Nature Materials, 2003, 2, 301–306.CrossRefGoogle Scholar
  21. [21]
    Han Z W, Zhang J Q, Ge C, Li W, Ren L Q. Erosion resistance of bionic functional surfaces inspired from desert scorpions. Langmuir, 2012, 28, 2914–2921.CrossRefGoogle Scholar
  22. [22]
    Malshe A, Rajurkar K, Samant A, Hansen H N, Bapat S, Jiang W P. Bio-inspired functional surfaces for advanced applications. Cirp Annals-Manufacturing Technology, 2013, 62, 607–628.CrossRefGoogle Scholar
  23. [23]
    Liu K S, Yao X, Jiang L. Recent developments in bio-inspired special wettability. Chemical Society Reviews, 2010, 39, 3240–3255.CrossRefGoogle Scholar
  24. [24]
    Yao H B, Fang H Y, Wang X H, Yu S H. Hierarchical assembly of micro-/nano-building blocks: Bio-inspired rigid structural functional materials. Chemical Society Reviews, 2011, 40, 3764–3785.CrossRefGoogle Scholar
  25. [25]
    Sanchez C, Arribart H, Guille M M G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 2005, 4, 277–288.CrossRefGoogle Scholar
  26. [26]
    Fratzl P. Biomimetic materials research: What can we really learn from nature’s structural materials? Journal of the Royal Society Interface, 2007, 4, 637–642.CrossRefGoogle Scholar
  27. [27]
    Ball P. Life’s lessons in design. Nature, 2001, 409, 413–416.CrossRefGoogle Scholar
  28. [28]
    Douglas T. A bright bio-inspired future. Science, 2003, 299, 1192–1193.CrossRefGoogle Scholar
  29. [29]
    Sarikaya M, Tamerler C, Jen A K Y, Schulten K, Baneyx F. Molecular biomimetics: Nanotechnology through biology. Nature Materials, 2003, 2, 577–585.CrossRefGoogle Scholar
  30. [30]
    Mayer G. Rigid biological systems as models for synthetic composites. Science, 2005, 310, 1144–1147.CrossRefGoogle Scholar
  31. [31]
    Lee L P, Szema R. Inspirations from biological, optics for advanced phtonic systems. Science, 2005, 310, 1148–1150.CrossRefGoogle Scholar
  32. [32]
    Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials. Advanced Materials, 2008, 20, 2842–2858.CrossRefGoogle Scholar
  33. [33]
    Huebsch N, Mooney D J. Inspiration and application in the evolution of biomaterials. Nature, 2009, 462, 426–432.CrossRefGoogle Scholar
  34. [34]
    Kolle M, Salgard-Cunha P M, Scherer M R J, Huang F M, Vukusic P, Mahajan S, Baumberg J J, Steiner U. Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nat Nanotechnol, 2010, 5, 511–515.CrossRefGoogle Scholar
  35. [35]
    Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors. Reports on Progress in Physics, 2008, 71, 076401.Google Scholar
  36. [36]
    Wickham S, Large M C J, Poladian L, Jermiin L S. Exaggeration and suppression of iridescence: The evolution of two-dimensional butterfly structural colours. Journal of the Royal Society Interface, 2006, 3, 99–108.CrossRefGoogle Scholar
  37. [37]
    Imafuku M, Kubota H Y, Inouye K. Wing colors based on arrangement of the multilayer structure of wing scales in Lycaenid butterflies (insecta: Lepidoptera). Entomological Science, 2012, 15, 400–407.CrossRefGoogle Scholar
  38. [38]
    Zhao Y J, Xie Z Y, Gu H C, Zhu C, Gu Z Z. Bio-inspired variable structural color materials. Chemical Society Reviews, 2012, 41, 3297–3317.CrossRefGoogle Scholar
  39. [39]
    Ingram A L, Parker A R. A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990). Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2465–2480.CrossRefGoogle Scholar
  40. [40]
    Vukusic P, Stavenga D G. Physical methods for investigating structural colours in biological systems. Journal of the Royal Society Interface, 2009, 6, S133–S148.CrossRefGoogle Scholar
  41. [41]
    Han Z W, Niu S C, Shang C H, Liu Z N, Ren L Q. Light trapping structures in wing scales of butterfly Trogonoptera brookiana. Nanoscale, 2012, 4, 2879–2883.CrossRefGoogle Scholar
  42. [42]
    Han Z W, Niu S C, Yang M, Zhang J Q, Yin W, Ren L Q. An ingenious replica templated from the light trapping structure in butterfly wing scales. Nanoscale, 2013, 5, 8500–8506.CrossRefGoogle Scholar
  43. [43]
    Han Z W, Niu S C, Li W, Ren L Q. Preparation of bionic nanostructures from butterfly wings and their low reflectivity of ultraviolet. Applied Physics Letters, 2013, 102, 233702.Google Scholar
  44. [44]
    Han Z W, Niu S C, Zhang L F, Liu Z N, Ren L Q. Light trapping effect in wing scales of butterfly Papilio peranthus and its simulations. Journal of Bionic Engineering, 2013, 10, 162–169.CrossRefGoogle Scholar
  45. [45]
    Mei H, Luo D, Guo P, Song C, Liu C C, Zheng Y M, Jiang L. Multi-level micro-/nanostructures of butterfly wings adapt at low temperature to water repellency. Soft Matter, 2011, 7, 10569–10573.CrossRefGoogle Scholar
  46. [46]
    Pris A D, Utturkar Y, Surman C, Morris W G, Vert A, Zalyubovskiy S, Deng T, Ghiradella H T, Potyrailo R A. Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures. Nature Photonics, 2012, 6, 195–200.CrossRefGoogle Scholar
  47. [47]
    Potyrailo R A, Ghiradella H, Vertiatchikh A, Dovidenko K, Cournoyer J R, Olson E. Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photonics, 2007, 1, 123–128.CrossRefGoogle Scholar
  48. [48]
    Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter, 2007, 3, 178–182.CrossRefGoogle Scholar
  49. [49]
    Koon D W, Crawford A B. Insect thin films as sun blocks, not solar collectors. Applied Optics, 2000, 39, 2496–2498.CrossRefGoogle Scholar
  50. [50]
    Huang J Y, Wang X D, Wang Z L. Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Letters, 2006, 6, 2325–2331.CrossRefGoogle Scholar
  51. [51]
    Kustandi T S, Low H Y, Teng J H, Rodriguez I, Yin R. Mimicking domino-like photonic nanostructures on butterfly wings. Small, 2009, 5, 574–578.CrossRefGoogle Scholar
  52. [52]
    Zhang W, Zhang D, Fan T X, Gu J J, Ding R, Wang H, Guo Q X, Ogawa H. Novel photoanode structure templated from butterfly wing scales. Chemistry of Materials, 2009, 21, 33–40.CrossRefGoogle Scholar
  53. [53]
    Parker A R, Townley H E. Biomimetics of photonic nanostructures. Nature Nanotechnology, 2007, 2, 347–353.CrossRefGoogle Scholar
  54. [54]
    Biro L P, Vigneron J P. Photonic nanoarchitectures in butterflies and beetles: Valuable sources for bioinspiration. Laser & Photonics Reviews, 2011, 5, 27–51.CrossRefGoogle Scholar
  55. [55]
    Saito A, Shibuya T, Yonezawa M, Akai-Kasaya M, Kuwahara Y. Simulation analysis on the optical role of the number of randomly arranged nano-trees on the Morpho butterfly’s scale. Bioinspiration, Biomimetics, and Bioreplication, 2013, 8686, 86860J.Google Scholar
  56. [56]
    Potyrailo R A, Starkey T A, Vukusic P, Ghiradella H, Vasudev M, Bunning T, Naik R R, Tang Z X, Larsen M, Deng T, Zhong S, Palacios M, Grande J C, Zorn G, Goddard G, Zalubovsky S. Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15567–15572.CrossRefGoogle Scholar
  57. [57]
    Mejdoubi A, Andraud C, Berthier S, Lafait J, Boulenguez J, Richalot E. Finite element modeling of the radiative properties of Morpho butterfly wing scales. Physical Review E, 2013, 87, 022705.Google Scholar
  58. [58]
    Steindorfer M A, Schmidt V, Belegratis M, Stadlober B, Krenn J R. Detailed simulation of structural color generation inspired by the Morpho butterfly. Optics Express, 2012, 20, 21485–21494.CrossRefGoogle Scholar
  59. [59]
    Peng W H, Zhu S M, Wang W L, Zhang W, Gu J J, Hu X B, Zhang D, Chen Z X. 3D network magnetophotonic crystals fabricated on Morpho butterfly wing templates. Advanced Functional Materials, 2012, 22, 2072–2080.CrossRefGoogle Scholar
  60. [60]
    Chung K, Yu S, Heo C J, Shim J W, Yang S M, Han M G, Lee H S, Jin Y, Lee S Y, Park N, Shin J H. Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings. Advanced Materials, 2012, 24, 2375–2379.CrossRefGoogle Scholar
  61. [61]
    Sharma V, Crne M, Park J O, Srinivasarao M. Structural origin of circularly polarized iridescence in jeweled beetles. Science, 2009, 325, 449–451.CrossRefGoogle Scholar
  62. [62]
    Vukusic P. Evolutionary photonics with a twist. Science, 2009, 325, 398–399.CrossRefGoogle Scholar
  63. [63]
    Gaillot D P, Deparis O, Welch V, Wagner B K, Vigneron J P, Summers C J. Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition. Physical Review E, 2008, 78, 031922.Google Scholar
  64. [64]
    Yoshioka S, Kinoshita S. Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly. Proceedings of the Royal Society B-Biological Sciences, 2006, 273, 129–134.CrossRefGoogle Scholar
  65. [65]
    Yoshioka S, Kinoshita S. Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 581–587.CrossRefGoogle Scholar
  66. [66]
    Biro L P, Balint Z, Kertesz K, Vertesy Z, Mark G I, Horvath Z E, Balazs J, Mehn D, Kiricsi I, Lousse V, Vigneron J P. Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair. Physical Review E, 2003, 67, 021907.Google Scholar
  67. [67]
    Vukusic P, Sambles J R, Lawrence C R, Wootton R J. Quantified interference and diffraction in single Morpho butterfly scales. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1403–1411.CrossRefGoogle Scholar
  68. [68]
    Gralak B, Tayeb G, Enoch S. Morpho butterflies wings color modeled with lamellar grating theory. Optics Express, 2001, 9, 567–578.CrossRefGoogle Scholar
  69. [69]
    Plattner L. Optical properties of the scales of Morpho rhetenor butterflies: Theoretical and experimental investigation of the back-scattering of light in the visible spectrum. Journal of the Royal Society Interface, 2004, 1, 49–59.CrossRefGoogle Scholar
  70. [70]
    Banerjee S, Cole J B, Yatagai T. Colour characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method. Micron, 2007, 38, 97–103.CrossRefGoogle Scholar
  71. [71]
    Parker A R. 515 million years of structural colour. Journal of Optics A: Pure and Applied Optics, 2000, 2, R15–R28.CrossRefGoogle Scholar
  72. [72]
    Watanabe K, Hoshino T, Kanda K, Haruyama Y, Matsui S. Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Japanese Journal of Applied Physics Part 2: Letters & Express Letters, 2005, 44, L48–L50.CrossRefGoogle Scholar
  73. [73]
    Kertesz K, Molnar G, Vertesy Z, Koos A A, Horvath Z E, Mark G I, Tapaszto L, Balint Z, Tamaska I, Deparis O, Vigneron J P, Biro L P. Photonic band gap materials in butterfly scales: A possible source of “blueprints”. Materials Science and Engineering B: Advanced Functional Solid-State Materials, 2008, 149, 259–265.CrossRefGoogle Scholar
  74. [74]
    Jorgensen M R, Bartl M H. Biotemplating routes to three-dimensional photonic crystals. Journal of Materials Chemistry, 2011, 21, 10583–10591.CrossRefGoogle Scholar
  75. [75]
    Chung K, Shin J H. Range and stability of structural colors generated by Morpho-inspired color reflectors. Journal of the Optical Society of America A: Optics Image Science and Vision, 2013, 30, 962–968.CrossRefGoogle Scholar
  76. [76]
    Kinoshita S, Yoshioka S, Kawagoe K. Mechanisms of structural colour in the Morpho butterfly: Cooperation of regularity and irregularity in an iridescent scale. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1417–1421.CrossRefGoogle Scholar
  77. [77]
    Parker A R, Welch V L, Driver D, Martini N. Structural colour-opal analogue discovered in a weevil. Nature, 2003, 426, 786–787.CrossRefGoogle Scholar
  78. [78]
    Vukusic P. Natural photonics. Physics World, 2004, 17, 35–39.CrossRefGoogle Scholar
  79. [79]
    Kinoshita S, Yoshioka S. Structural colors in nature: The role of regularity and irregularity in the structure. ChemPhysChem, 2005, 6, 1442–1459.CrossRefGoogle Scholar
  80. [80]
    Xu J, Guo Z G. Biomimetic photonic materials with tunable structural colors. Journal of Colloid and Interface Science, 2013, 406, 1–17.CrossRefGoogle Scholar
  81. [81]
    Parker A R, Townley H E. Biomimetics of photonic nanostructures. Nature Nanotechnology, 2007, 2, 347–353.CrossRefGoogle Scholar
  82. [82]
    Liu F, Dong B Q, Liu X H, Zheng Y M, Zi J. Structural color change in longhorn beetles Tmesisternus isabellae. Optics Express, 2009, 17, 16183–16191.CrossRefGoogle Scholar
  83. [83]
    Vigneron J P, Pasteels J M, Windsor D M, Vertesy Z, Rassart M, Seldrum T, Dumont J, Deparis O, Lousse V, Biro L P, Ertz D, Welch V. Switchable reflector in the panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae). Physical Review E, 2007, 76, 031907.Google Scholar
  84. [84]
    Zi J, Yu X, Li Y, Hu X, Xu C, Wang X, Liu X, Fu R. Coloration strategies in peacock feathers. Proceedings of the National Academy Science of the United States of America, 2003, 100, 12576–12578.CrossRefGoogle Scholar
  85. [85]
    Li Y Z, Lu Z H, Yin H W, Yu X D, Liu X H, Zi J. Structural origin of the brown color of barbules in male peacock tail feathers. Physical Review E, 2005, 72, 010902.Google Scholar
  86. [86]
    Yoshioka S, Nakamura E, Kinoshita S. Origin of two-color iridescence in rock dove’s feather. Journal of the Physical Society of Japan, 2007, 76, 013801.Google Scholar
  87. [87]
    Kinoshita S, Yoshioka S. Structural colors in insects, particularly in Morpho butterflies. Sen-I Gakkaishi, 2003, 59, 35–39.CrossRefGoogle Scholar
  88. [88]
    Li H, He X. Bandstop mechanism of light scattering from Morpho butterfly’s wing. Journal of Electromagnetic Waves and Applications, 2008, 22, 1829–1838.CrossRefGoogle Scholar
  89. [89]
    Siddique R H, Diewald S, Leuthold J, Holscher H. Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies. Optics Express, 2013, 21, 14351–14361.CrossRefGoogle Scholar
  90. [90]
    Sato O, Kubo S, Gu Z Z. Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Accounts of Chemical Research, 2009, 42, 1–10.CrossRefGoogle Scholar
  91. [91]
    Prum R O, Quinn T, Torres R H. Anatomically diverse butterfly scales all produce structural colours by coherent scattering. Journal of Experimental Biology, 2006, 209, 748–765.CrossRefGoogle Scholar
  92. [92]
    Wong T H, Gupta M C, Robins B, Levendusky T L. Color generation in butterfly wings and fabrication of such structures. Optics Letters, 2003, 28, 2342–2344.CrossRefGoogle Scholar
  93. [93]
    Berthier S, Charron E, Da Silva A. Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus. Optics Communications, 2003, 228, 349–356.CrossRefGoogle Scholar
  94. [94]
    Kambe M, Zhu D, Kinoshita S. Origin of retroreflection from a wing of the Morpho butterfly. Journal of the Physical Society of Japan, 2011, 80, 054801.Google Scholar
  95. [95]
    Ding Y, Xu S, Wang Z L. Structural colors from Morpho peleides butterfly wing scales. Journal of Applied Physics, 2009, 106, 074702.Google Scholar
  96. [96]
    Smith G S. Structural color of Morpho butterflies. American Journal of Physics, 2009, 77, 1010–1019.CrossRefGoogle Scholar
  97. [97]
    Jiang X, Shi T L, Zuo H B, Yang X F, Wu W J, Liao G L. Investigation on color variation of Morpho butterfly wings hierarchical structure based on PCA. Science China-Technological Sciences, 2012, 55, 16–21.CrossRefGoogle Scholar
  98. [98]
    Boulenguez J, Berthier S, Leroy F. Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly. Applied Physics A: Materials Science & Processing, 2012, 106, 1005–1011.CrossRefGoogle Scholar
  99. [99]
    Wu W J, Shi T L, Liao G L, Zuo H B. Research on spectral reflection characteristics of nanostructures in Morpho butterfly wing scale. 3rd International Photonics and Optoelectronics Meetings (POEM 2010), 2011, 276, 012049.Google Scholar
  100. [100]
    Van Hooijdonk E, Barthou C, Vigneron J P, Berthier S. Structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae). Nanophotonic Materials Viii, 2011, 8094, 80940E.Google Scholar
  101. [101]
    Van Hooijdonk E, Barthou C, Vigneron J P, Berthier S. Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae). Journal of Nanophotonics, 2011, 5, 053525.Google Scholar
  102. [102]
    Liao G L, Zuo H B, Cao Y B, Shi T L. Optical properties of the micro/nano structures of Morpho butterfly wing scales. Science China-Technological Sciences, 2010, 53, 175–181.CrossRefGoogle Scholar
  103. [103]
    Nijhout H F. The color patterns of butterflies and moths. Scientific American, 1981, 245, 140–151.CrossRefGoogle Scholar
  104. [104]
    Srinivasarao M. Nano-optics in the biological world: Beetles, butterflies, birds, and moths. Chemical Reviews, 1999, 99, 1935–1961.CrossRefGoogle Scholar
  105. [105]
    Tada H, Mann S E, Miaoulis I N, Wong P Y. Effects of a butterfly scale microstructure on the iridescent color observed at different angles. Optics Express, 1999, 5, 87–92.CrossRefGoogle Scholar
  106. [106]
    Yu K L, Fan T X, Lou S, Zhang D. Biomimetic optical materials: Integration of nature’s design for manipulation of light. Progress in Materials Science, 2013, 58, 825–873.CrossRefGoogle Scholar
  107. [107]
    Saranathan V, Osuji C O, Mochrie S G J, Noh H, Narayanan S, Sandy A, Dufresne E R, Prum R O. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11676–11681.CrossRefGoogle Scholar
  108. [108]
    Saito A, Yonezawa M, Murase J, Juodkazis S, Mizeikis V, Akai-Kasaya M, Kuwahara Y. Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale. Journal of Nanoscience and Nanotechnology, 2011, 11, 2785–2792.CrossRefGoogle Scholar
  109. [109]
    Miyako E, Sugino T, Okazaki T, Bianco A, Yudasaka M, Iijima S. Self-assembled carbon nanotube honeycomb networks using a butterfly wing template as a multifunctional nanobiohybrid. ACS Nano, 2013, 7, 8736–8742.CrossRefGoogle Scholar
  110. [110]
    Zhang F Y, Shen Q C, Shi X D, Li S P, Wang W L, Luo Z, He G F, Zhang P, Tao P, Song C Y, Zhang W, Zhang D, Deng T, Shang W. Infrared detection based on localized modification of Morpho butterfly wings. Advanced materials, 2015, 27, 1077–1082.CrossRefGoogle Scholar
  111. [111]
    Jaksic Z, Pantelic D, Sarajlic M, Savic-Sevic S, Matovic J, Jelenkovic B, Vasiljevic-Radovic D, Curcic S, Vukovic S, Pavlovic V, Buha J, Lackovic V, Labudovic-Borovic M, Curcic B. Butterfly scales as bionic templates for complex ordered nanophotonic materials: A pathway to biomimetic plasmonics. Optical Materials, 2013, 35, 1869–1875.CrossRefGoogle Scholar
  112. [112]
    Oh J W, Chung W J, Heo K, Jin H E, Lee B Y, Wang E, Zueger C, Wong W, Meyer J, Kim C, Lee S Y, Kim W G, Zemla M, Auer M, Hexemer A, Lee S W. Biomimetic virus-based colourimetric sensors. Nature Communications, 2014, 5, 3043.Google Scholar
  113. [113]
    Wu W J, Liao G, Shi T L, Malik R, Zeng C. The relationship of selective surrounding response and the nanophotonic structures of Morpho butterfly scales. Microelectronic Engineering, 2012, 95, 42–48.CrossRefGoogle Scholar
  114. [114]
    Jiang T, Peng Z C, Wu W J, Shi T L, Liao G L. Gas sensing using hierarchical micro/nanostructures of Morpho butterfly scales. Sensors and Actuators A: Physical, 2014, 213, 63–69.CrossRefGoogle Scholar
  115. [115]
    Kinoshita S, Yoshioka S, Fujii Y, Okamoto N. Photophysics of structural color in the Morpho butterflies. Forma, 2002, 17, 103–121.Google Scholar
  116. [116]
    Kumazawa K, Tabata H. A three-dimensional fluorescence analysis of the wings of male Morpho sulkowskyi and Papilio xuthus butterflies. Zoological Science, 2001, 18, 1073–1079.CrossRefGoogle Scholar
  117. [117]
    Kertesz K, Piszter G, Jakab E, Balint Z, Vertesy Z, Biro L P. Color change of blue butterfly wing scales in an air-vapor ambient. Applied Surface Science, 2013, 281, 49–53.CrossRefGoogle Scholar
  118. [118]
    Fang Y, Sun G, Cong Q, Chen G H, Ren L Q. Effects of methanol on wettability of the non-smooth surface on butterfly wing. Journal of Bionic Engineering, 2008, 5, 127–133.CrossRefGoogle Scholar
  119. [119]
    Liu M J, Zheng Y M, Zhai J, Jiang L. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Accounts of Chemical Research, 2010, 43, 368–377.CrossRefGoogle Scholar
  120. [120]
    Liu F, Liu Y P, Huang L, Hu X H, Dong B Q, Shi W Z, Xie Y Q, Ye X A. Replication of homologous optical and hydrophobic features by templating wings of butterflies Morpho menelaus. Optics Communications, 2011, 284, 2376–2381.CrossRefGoogle Scholar
  121. [121]
    Bruzzone A A G, Costa H L, Lonardo P M, Lucca D A. Advances in engineered surfaces for functional performancex. Cirp Annals-Manufacturing Technology, 2008, 57, 750–769.CrossRefGoogle Scholar
  122. [122]
    Wang W L, Zhang W, Gu J J, Liu Q L, Deng T, Zhang D, Lin H Q. Design of a structure with low incident and viewing angle dependence inspired by Morpho butterflies. Scientific Reports, 2013, 3, 3427.CrossRefGoogle Scholar
  123. [123]
    Zhang D, Zhang W, Gu J J, Fan T X, Liu Q L, Su H L, Zhu S M. Inspiration from butterfly and moth wing scales: Characterization, modeling, and fabrication. Progress in Materials Science, 2015, 68, 67–96.CrossRefGoogle Scholar
  124. [124]
    Lee R T, Smith G S. Detailed electromagnetic simulation for the structural color of butterfly wings. Applied Optics, 2009, 48, 4177–4190.CrossRefGoogle Scholar
  125. [125]
    Zhu D, Kinoshita S, Cai D S, Cole J B. Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density. Physical Review E, 2009, 80, 051924.Google Scholar
  126. [126]
    Fudouzi H. Tunable structural color in organisms and photonic materials for design of bioinspired materials. Science and Technology of Advanced Materials, 2011, 12, 064704.Google Scholar
  127. [127]
    Biro L P, Kertesz K, Vertesy Z, Balint Z. Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors. Nature of Light: Light in Nature II, 2008, 7057, 705706.Google Scholar
  128. [128]
    Zuccarello G, Scribner D, Sands R, Buckley L J. Materials for bio-inspired optics. Advanced Materials, 2002, 14, 1261–1264.CrossRefGoogle Scholar
  129. [129]
    Claussen K U, Scheibel T, Schmidt H W, Giesa R. Polymer gradient materials: Can nature teach us new tricks? Macromolecular Materials and Engineering, 2012, 297, 938–957.CrossRefGoogle Scholar
  130. [130]
    Peisker H, Michels J, Gorb S N. Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nature Communications, 2013, 4, 1661.CrossRefGoogle Scholar
  131. [131]
    Guo Z G, Liu W M, Su B L. Superhydrophobic surfaces: From natural to biomimetic to functional. Journal of Colloid and Interface Science, 2011, 353, 335–355.CrossRefGoogle Scholar
  132. [132]
    Wang G Y, Guo Z G, Liu W M, Interfacial effects of superhydrophobic plant surfaces: A review. Journal of Bionic Engineering, 2014, 11, 325–345.CrossRefGoogle Scholar
  133. [133]
    Zhang Y L, Xia H, Kim E, Sun H B. Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter, 2012, 8, 11217–11231.CrossRefGoogle Scholar
  134. [134]
    Lafuma A, Quere D. Superhydrophobic states. Nature Materials, 2003, 2, 457–460.CrossRefGoogle Scholar
  135. [135]
    Marmur A. The lotus effect: Superhydrophobicity and metastability. Langmuir, 2004, 20, 3517–3519.CrossRefGoogle Scholar
  136. [136]
    Patankar N A. On the modeling of hydrophobic contact angles on rough surfaces. Langmuir, 2003, 19, 1249–1253.CrossRefGoogle Scholar
  137. [137]
    Patankar N A. Transition between superhydrophobic states on rough surfaces. Langmuir, 2004, 20, 7097–7102.CrossRefGoogle Scholar
  138. [138]
    Chen W, Fadeev A Y, Hsieh M C, Oner D, Youngblood J, McCarthy T J. Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples. Langmuir, 1999, 15, 3395–3399.CrossRefGoogle Scholar
  139. [139]
    He B, Patankar N A, Lee J. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir, 2003, 19, 4999–5003.CrossRefGoogle Scholar
  140. [140]
    Extrand C W. Criteria for ultralyophobic surfaces. Langmuir, 2004, 20, 5013–5018.CrossRefGoogle Scholar
  141. [141]
    Quere D, Lafuma A, Bico J. Slippy and sticky microtextured solids. Nanotechnology, 2003, 14, 1109–1112.CrossRefGoogle Scholar
  142. [142]
    Baumli P, Kaptay G. Wettability of carbon surfaces by pure molten alkali chlorides and their penetration into a porous graphite substrate. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008, 495, 192–196.CrossRefGoogle Scholar
  143. [143]
    Wagner T, Neinhuis C, Barthlott W. Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zoologica, 1996, 77, 213–225.CrossRefGoogle Scholar
  144. [144]
    Nishimoto S, Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Advances, 2013, 3, 671–690.CrossRefGoogle Scholar
  145. [145]
    Andrady A L, Xu P. Elastic behavior of chitosan films. Journal of Polymer Science Part B: Polymer Physics, 1997, 35, 517–521.CrossRefGoogle Scholar
  146. [146]
    Cheng J C, Pisano A P. Photolithographic process for integration of the biopolymer chitosan into micro/nano structures. Journal of Microelectromechanical Systems, 2008, 17, 402–409.CrossRefGoogle Scholar
  147. [147]
    Ogawa Y, Hori R, Kim U J, Wada M. Elastic modulus in the crystalline region and the thermal expansion coefficients of α-chitin determined using synchrotron radiated X-ray diffraction. Carbohydrate Polymers, 2011, 83, 1213–1217.CrossRefGoogle Scholar
  148. [148]
    Zhang Z Y, Zhao P, Lin P, Sun F G. Thermo-optic coefficients of polymers for optical waveguide applications. Polymer, 2006, 47, 4893–4896.CrossRefGoogle Scholar
  149. [149]
    Sambles J R. Biophotonics blue butterflies feel the heat. Nature Photonics, 2012, 6, 141–142.CrossRefGoogle Scholar
  150. [150]
    Yang Q Q, Zhu S M, Peng W H, Yin C, Wang W L, Gu J J, Zhang W, Ma J, Deng T, Feng C L, Zhang D. Bioinspired fabrication of hierarchically structured, pH-tunable photonic crystals with unique transition. ACS Nano, 2013, 7, 4911–4918.CrossRefGoogle Scholar
  151. [151]
    Aryal M, Ko D H, Tumbleston J R, Gadisa A, Samulski E T, Lopez R. Large area nanofabrication of butterfly wing’s three dimensional ultrastructures. Journal of Vacuum Science & Technology B, 2012, 30, 061802.Google Scholar

Copyright information

© Jilin University 2015

Authors and Affiliations

  • Shichao Niu
    • 1
  • Bo Li
    • 1
  • Zhengzhi Mu
    • 1
  • Meng Yang
    • 1
  • Junqiu Zhang
    • 1
  • Zhiwu Han
    • 1
  • Luquan Ren
    • 1
  1. 1.Key Laboratory of Bionic Engineering (Ministry of Education, China)Jilin UniversityChangchunChina

Personalised recommendations