Skip to main content
Log in

Adhesion and Suction Functions of the Tip Region of a Nectar-drinking Butterfly Proboscis

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In this study, we investigated the dynamic functions of the tip region of the butterfly proboscis through which liquid is sucked during liquid feeding. The microstructures and flow patterns in the tip region of the proboscis were in vivo analyzed. The tip region can be divided into two functional sections: namely adhesion and suction sections. The liquid adheres to the adhesion section during liquid suction. Although the tip region has numerous slits connected to food canal of the proboscis, liquid is mainly sucked through the suction section, which section is submerged in the fluid pulled by the adhesion section and then successfully imbibes liquid. To check the dynamic functions of the tip region, we fabricated a suction tip model having adhesion and suction parts. The in vitro model experiments show that the hydrophilicity of the adhesion part and the existence of the suction inlet improve the liquid uptake driven by a suction pump. This study may provide insights for the biomimetic design of nectar-feeding butterflies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laser D J, Santiago J G. A review of micropumps. Journal of Micromechanics and Microengineering, 2004, 14, R35–R64.

    Article  Google Scholar 

  2. Yang H, Wu J, Yan S. Effects of erectable glossal hairs on a honeybee’s nectar-drinking strategy. Applied Physics Letters, 2014, 104, 263701.

    Article  Google Scholar 

  3. Wu J, Yang H, Yan S. Energy saving strategies of honeybees in dipping nectar. Scientific Reports, 2015, 5, 15002.

    Article  Google Scholar 

  4. Li C, Wu J, Yang Y, Zhu R, Yan S. Drag reduction in the mouthpart of a honeybee facilitated by galea ridges for nectar-dipping strategy. Journal of Bionic Engineering, 2015, 12, 70–78.

    Article  Google Scholar 

  5. Li C, Wu J, Yang Y, Zhu R, Yan S. Drag reduction effects facilitated by microridges inside the mouthparts of honeybee workers and drones. Journal of Theoretical Biology, 2016, 389, 1–10.

    Article  Google Scholar 

  6. Zhao Y, Wu J, Yang H, Yan S. The morphology and reciprocation movement of Honeybee’s hairy tongue for nectar uptake. Journal of Bionic Engineering, 2016, 13, 98–107.

    Article  Google Scholar 

  7. Jaiswal S, Muthuswamy S. Instability analysis of mosquito fascicle under compressive load with vibrations and microneedle design. Journal of Bionic Engineering, 2015, 12, 443–452.

    Article  Google Scholar 

  8. Kim W, Gilet T, Bush J W M. Optimal concentrations in nectar feeding. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16618–16621.

    Article  Google Scholar 

  9. Kim W, Bush J W M. Natural drinking strategies. Journal of Fluid Mechanics, 2012, 705, 7–25.

    Article  Google Scholar 

  10. Krenn H W. Feeding mechanisms of adult Lepidoptera: Structure, function, and evolution of the mouthparts. Annual Review of Entomology, 2010, 55, 307–327.

    Article  Google Scholar 

  11. Eastham L E S, Eassa Y E E. The feeding mechanism of the butterfl? Pieris Brassicae L. Philosophical Transactions of the Royal Society B: Biological Sciences, 1955, 239, 1–43.

    Article  Google Scholar 

  12. Eberhard S H, Krenn H W. Anatomy of the oral valve in nymphalid butterflies and a functional model for fluid uptake in Lepidoptera. Zoologischer Anzeiger-A Journal of Comparative Zoology, 2005, 243, 305–312.

    Article  Google Scholar 

  13. Kingsolver J G, Daniel T L. Mechanics of food handling by fluid-feeding insects. In: Chapman R F, de Boer G, eds., Regulatory Mechanisms in Insect Feeding, Springer, New York, USA, 1995, 32–73.

    Chapter  Google Scholar 

  14. Kingsolver J G, Daniel T L. On the mechanics and energetics of nectar feeding in butterflies. Journal of Theoretical Biology, 1979, 76, 167–179.

    Article  Google Scholar 

  15. Daniel T L, Kingsolver J G, Meyhofer E. Mechanical determinants of nectar-feeding energetics in butterflies: Muscle mechanics, feeding geometry, and functional equivalence. Oecologia, 1989, 79, 66–75.

    Article  Google Scholar 

  16. Pivnick K A, McNeil J N. Effects of nectar concentration on butterfly feeding: Measured feeding rates for Thymelicus lineola (Lepidoptera: Hesperiidae) and a general feeding model for adult Lepidoptera. Oecologia, 1985, 66, 226–237.

    Article  Google Scholar 

  17. Borrell B J, Krenn H W. Nectar feeding in long-proboscis insects. In: Herrel A, Speck T, Rowe N P, eds., Ecology and Biomechanics: A Mechanical Approach to the Ecology of Animals and Plants, Taylor & Francis, Boca Raton, 2006, 185–212.

    Google Scholar 

  18. Boggs C L. Rates of nectar feeding in butterflies: Effects of sex, size, age and nectar concentration. Functional Ecology, 1988, 2, 289–295.

    Article  Google Scholar 

  19. May P G. Nectar uptake rates and optimal nectar concentrations of two butterfly species. Oecologia, 1985, 66, 381–386.

    Article  Google Scholar 

  20. Krenn H W, Plant J D, Szucsich N U. Mouthparts of flower-visiting insects. Arthropod Structure & Development, 2005, 34, 1–40.

    Article  Google Scholar 

  21. Krenn H W. Functional morphology and movements of the proboscis of Lepidoptera (Insecta). Zoomorphology, 1990, 110, 105–114.

    Article  Google Scholar 

  22. Krenn H W. Proboscis sensilla in Vanessa cardui (Nymphalidae, Lepidoptera): Functional morphology and significance in flower-probing. Zoomorphology, 1998, 118, 23–30.

    Article  Google Scholar 

  23. Krenn H W, Kristensen N P. Early evolution of the proboscis of Lepidoptera (Insecta): External morphology of the galea in basal glossatan moths lineages, with remarks on the origin of the pilifers. Zoologischer Anzeiger, 2000, 239, 179–196.

    Google Scholar 

  24. Krenn H W, Zulka K P, Gatschnegg T. Proboscis morphology and food preferences in nymphalid butterflies (Lepidoptera: Nymphalidae). Journal of Zoology, 2001, 254, 17–26.

    Article  Google Scholar 

  25. Lee S J, Lee S C, Kim B H. Liquid-intake flow around the tip of butterfly proboscis. Journal of Theoretical Biology, 2014, 348, 113–121.

    Article  Google Scholar 

  26. Tsai C C, Monaenkova D, Beard C E, Adler P H, Kornev K G. Paradox of the drinking-straw model of the butterfly proboscis. Journal of Experimental Biology, 2014, 217, 2130–2138.

    Article  Google Scholar 

  27. Adrian R J. Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 1991, 23, 261–304.

    Article  Google Scholar 

  28. Lehnert M S, Monaenkova D, Andrukh T, Beard C E, Adler P H, Kornev K G. Hydrophobic-hydrophilic dichotomy of the butterfly proboscis. Journal of the Royal Society Interface, 2013, 10, 20130336.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Joon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.C., Kim, J.H. & Lee, S.J. Adhesion and Suction Functions of the Tip Region of a Nectar-drinking Butterfly Proboscis. J Bionic Eng 14, 600–606 (2017). https://doi.org/10.1016/S1672-6529(16)60425-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(16)60425-0

Keywords

Navigation