Skip to main content
Log in

Bioinspired Self-Healing Organic Materials: Chemical Mechanisms and Fabrications

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Design and preparation of organic materials having the ability to automatically restore their mechanical and physical properties are of great importance because of the extensive application ranging from aerospace components to microcircuitry, where the accessibility is highly limited and the reparability of materials is lower. The self-healing behavior is actually a dynamic property of material, resembling what is possessed by nature living systems. Therefore, fabrication of most self-healing materials is actually inspired by nature. This tutorial review focuses on the basic chemical mechanisms that have been successfully adopted in designing self-healing organic materials. It specially covers recent development in the design of materials with durable, easy repairable or self-healing superhydrophobic surfaces and coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zwaag S V D. Self healing materials. Springer, Dordrecht, Holland, 2007.

    Book  Google Scholar 

  2. Syrett J A, Becer C R, Haddleton D M. Self-healing and self-mendable polymers. Polymer Chemistry, 2010, 1, 978–987.

    Article  Google Scholar 

  3. Diegelmann R F, Evans C M. Wound healing: An overview of acute, fibrotic and delayed healing. Frontiers in Bioscience, 2004, 9, 283–289.

    Article  Google Scholar 

  4. Paris R, Lamattina L, Casalongue C A. Nitric oxide promotes the wound-healing response of potato leaflets. Plant Physiology and Biochemistry, 2007, 45, 80–86.

    Article  Google Scholar 

  5. Yang Y, Urban M W. Self-healing polymeric materials. Chemical Society Reviews, 2013, 42, 7446–7467.

    Article  Google Scholar 

  6. White S R, Sottos N R, Geubelle P H, Moore J S, Kessler M R, Sriram S R, Brown E N, Viswanathan S. Autonomic healing of polymer composites. Nature, 2001, 409, 794–797.

    Article  Google Scholar 

  7. Brown E N, White S R, Sottos N R. Microcapsule induced toughening in a self-healing polymer composite. Journal of Materials Science, 2004, 39, 1703–1710.

    Article  Google Scholar 

  8. Rule J D, Brown E N, Sottos N R, White S R, Moore J S. Wax–protected catalyst microspheres for efficient self–healing materials. Advanced Materials, 2005, 17, 205–208.

    Article  Google Scholar 

  9. Keller M W, White S R, Sottos N R. A self-healing poly(dimethyl siloxane) elastomer. Advanced Functional Materials, 2007, 17, 2399–2404.

    Article  Google Scholar 

  10. Yang J L, Keller M W, Moore J S, White S R, Sottos N R. Microencapsulation of isocyanates for self-healing polymers. Macromolecules, 2008, 41, 9650–9655.

    Article  Google Scholar 

  11. Yin T, Rong M Z, Zhang M Q, Yang G C. Self-healing epoxy composites-preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Composites Science and Technology, 2007, 67, 201–212.

    Article  Google Scholar 

  12. Shchukin D G, Mohwald H. Self-repairing coatings containing active nanoreservoirs. Small, 2007, 3, 926–943.

    Article  Google Scholar 

  13. Lutterman D A, Surendranath Y, Nocera D G. A self-healing oxygen–evolving catalyst. Journal of the American Chemical Society, 2009, 131, 3838–3839.

    Article  Google Scholar 

  14. Chen X X, Wudl F, Mal A K, Shen H B, Nutt S R. New thermally remendable highly cross-linked polymeric materials. Macromolecules, 2003, 36, 1802–1807.

    Article  Google Scholar 

  15. Kersey F R, Loveless D M, Craig S L. A hybrid polymer gel with controlled rates of cross-link rupture and self-repair. Journal of the Royal Society Interface, 2007, 4, 373–380.

    Article  Google Scholar 

  16. Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from su-pramolecular assembly. Nature, 2008, 451, 977–980.

    Article  Google Scholar 

  17. Toohey K S, Sottos N R, Lewis J A, Moore J S, White S R. Self-healing materials with microvascular networks. Nature Materials, 2007, 6, 581–585.

    Article  Google Scholar 

  18. Lee J Y, Buxton G A, Balazs A C. Using nanoparticles to create self-healing composites. The Journal of Chemical Physics, 2004, 121, 5531–5540.

    Article  Google Scholar 

  19. Gupta S, Zhang Q L, Emrick T, Balazs A C, Russell T P. Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Materials, 2006, 5, 229–233.

    Article  Google Scholar 

  20. Verberg R, Dale A T, Kumar P, Alexeev A, Balazs A C. Healing substrates with mobile, particle–filled microcapsules: designing a ‘repair and go’ system. Journal of the Royal Society Interface, 2007, 4, 349–357.

    Article  Google Scholar 

  21. Kalista S J, Ward T C. Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers. Journal of the Royal Society Interface, 2007, 4, 405–411.

    Article  Google Scholar 

  22. Andreeva D V, Fix D, Mohwald H, Shchukin D G. Self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwichlike nanostructures. Advanced Materials, 2008, 20, 2789–2794.

    Article  Google Scholar 

  23. Cho S H, Andersson H M, White S R, Sottos N R, Braun P V. Polydimethylsiloxane-based self-healing materials. Advanced Materials, 2006, 18, 997–1000.

    Article  Google Scholar 

  24. Wu D Y, Meure S, Solomon D. Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science, 2008, 33, 479–522.

    Article  Google Scholar 

  25. Wool R P. Self-healing materials: a review. Soft Matter, 2008, 4, 400–418.

    Article  Google Scholar 

  26. Burattini S, Greenland B W, Chappell D, Colquhoun H M, Hayes W. Healable polymeric materials: A tutorial review. Chemical Society Reviews, 2010, 39, 1973–1985.

    Article  Google Scholar 

  27. Cannon S L, McKenna G B, Statton W O. Hard-elastic fibers. (A review of a novel state for crystalline polymers). Journal of Polymer Science: Macromolecular Reviews, 1976, 11, 209–275.

    Google Scholar 

  28. Guimard N K, Oehlenschlaeger K K, Zhou J W, Hilf S, Schmidt F G, Barner-Kowollik C. Current trends in the field of self-healing materials. Macromolecular Chemistry and Physics, 2012, 213, 131–143.

    Article  Google Scholar 

  29. Cho S H, White S R, Braun P V. Self-healing polymer coatings. Advance Materials, 2009, 21, 645–649.

    Article  Google Scholar 

  30. Koch G H, Brongers M P, Thompson N G, Virmani Y P, Payer J H. Corrosion costs and preventive strategies in the united states, FHWA–RD–01–156, Department of Transportation, Federal Highway Administration, Washington D.C., USA, 2001.

    Google Scholar 

  31. Park J H, Braun P V. Coaxial electrospinning of self-healing coatings. Advanced Materials, 2010, 22, 496–499.

    Article  Google Scholar 

  32. Shchukin D G, Borisova D, Möhwald H. Self-healing polymers: From principles to applications. Binder W (Ed.), Wiley-VCH, Weinheim, Germany, 2013.

  33. Kumar K, Stephenson L L, Murray J N. Self-healing coatings for steel. Progress in Organic Coatings, 2006, 55, 244–253.

    Article  Google Scholar 

  34. Suryanarayana C, Rao K C, Kumar D. Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Progress in Organic Coatings, 2008, 63, 72–78.

    Article  Google Scholar 

  35. Liu Y L, Chuo T W. Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polymer Chemistry, 2013, 4, 2194–2205.

    Article  Google Scholar 

  36. Blaiszik B J, Kramer S L B, Olugebefola S C, Moore J S, Sottos N R, White S R. Self-healing polymers and composites. Annual Review of Materials Research, 2010, 40, 179–211.

    Article  Google Scholar 

  37. Liu X J, Liang Y M, Zhou F, Liu W M. Extreme wettability and tunable adhesion: biomimicking beyond nature? Soft Matter, 2012, 8, 2070–2086.

    Article  Google Scholar 

  38. Nishimoto S, Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and super-hydrophilicity. RSC Advances, 2013, 3, 671–690.

    Article  Google Scholar 

  39. Sun T L, Feng L, Gao X F, Jiang L. Bioinspired surfaces with special wettability. Accounts of Chemical Research, 2005, 38, 644–652.

    Article  Google Scholar 

  40. Liu X J, Liu Z L, Liang Y M, Zhou F. In situ surface reaction induced adhesion force change for mobility control, droplet sorting and bio-detection. Soft Matter, 2012, 8, 10370–10377.

    Article  Google Scholar 

  41. Liu X J, Cai M R, Liang Y M, Zhou F, Liu W M. Photo-regulated stick-slip switch of water droplet mobility. Soft Matter, 2011, 7, 3331–3336.

    Article  Google Scholar 

  42. Bellanger H, Darmanin T, Givenchy E T, Guittard F. Chemical and physical pathways for the preparation of su-peroleophobic surfaces and related wetting theories. Chemical Reviews, 2014, 114, 2694–2716.

    Article  Google Scholar 

  43. Ionov L, Synytska A. Self-healing superhydrophobic materials. Physical Chemistry Chemical Physics, 2012, 14, 10497–10502.

    Article  Google Scholar 

  44. Kessler M R. Self-healing: A new paradigm in materials design. Journal of Intelligent Material Systems and Structures, 2014, 25, 87–97.

    Article  Google Scholar 

  45. White S R, Caruso M M, Moore J S. Autonomic gealing of polymers. MRS Bulletin, 2008, 33, 766–769.

    Article  Google Scholar 

  46. Hager M D, Greil P, Leyens C, Zwaag S, Schubert U S. Self–healing materials. Advance Materials, 2010, 22, 5424–5430.

    Article  Google Scholar 

  47. Amamoto Y, Kamada J, Otsuka H, Takahara A, Maty-jaszewski K. Repeatable photoinduced self–healing of co-valently cross–linked polymers through reshuffling of trithiocarbonate units. Angewandte Chemie, 2011, 123, 1698–1701.

    Article  Google Scholar 

  48. Jones A S, Rule J D, Moore J S, White S R, Sottos N R. Catalyst morphology and dissolution kinetics of self–healing polymers. Chemistry of Materials, 2006, 18, 1312–1317.

    Article  Google Scholar 

  49. Wilson G O, Caruso M M, Reimer N T, White S R, Sottos N R, Moore J S. Evaluation of ruthenium catalysts for ring-opening metathesis polymerization-based self-healing applications. Chemistry of Materials, 2008, 20, 3288–3297.

    Article  Google Scholar 

  50. Cho S H, White S R, Braun P V. Room-temperature polydimethylsiloxane-based self-healing polymers. Chemistry of Materials, 2012, 24, 4209–4214.

    Article  Google Scholar 

  51. Kirkby E L, Michaud V J, Manson J A E, Sottos N R, White S R. Performance of self-healing epoxy with microencap-sulated healing agent and shape memory alloy wires. Polymer, 2009, 50, 5533–5538.

    Article  Google Scholar 

  52. Xu W, Li G. Constitutive modeling of shape memory polymer based self-healing syntactic foam. International Journal of Solids and Structures, 2010, 47, 1306–1316.

    Article  MATH  Google Scholar 

  53. Neuser S, Michaud V, White S R. Improving solvent-based self-healing materials through shape memory alloys. Polymer, 2012, 53, 370–378.

    Article  Google Scholar 

  54. Kamphaus J M, Rule J D, Moore J S, Sottos N R, White S R. A new self-healing epoxy with tungsten (VI) chloride catalyst. Journal of the Royal Society Interface, 2008, 5, 95–103.

    Article  Google Scholar 

  55. Toohey K S, Hansen C J, Lewis J A, White S R, Sottos N R. Delivery of two-part self-healing chemistry via microvas-cular networks. Advanced Functional Materials, 2009, 19, 1399–1405.

    Article  Google Scholar 

  56. Pang J W C, Bond, I P. A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Composites Science and Technology, 2005, 65, 1791–1799.

    Article  Google Scholar 

  57. Sanyal A. Diels-alder cycloaddition-cycloreversion: A powerful combo in materials design. Macromolecular Chemistry and Physics, 2010, 211, 1417–1425.

    Article  Google Scholar 

  58. Tasdelen M A. Diels-Alder “click” reactions: Recent applications in polymer and material science. Polymer Chemistry, 2011, 2, 2133–2145.

    Article  Google Scholar 

  59. Goodall G W, Hayes W. Advances in cycloaddition polymerizations. Chemical Society Reviews, 2006, 35, 280–312.

    Article  Google Scholar 

  60. Stille J K, Harris F W, Rakutis R O, Mukamal H. Diels-Alder polymerizations: Polymers containing controlled aromatic segments. Journal of Polymer Science Part B: Polymer Letters, 1966, 4, 791–793.

    Article  Google Scholar 

  61. Sauk J, Byun J, Kim H. Composite Nafion/polyphenylene oxide (PPO) membranes with phosphomolybdic acid (PMA) for direct methanol fuel cells. Journal of Power Sources, 2005, 143, 136–141.

    Article  Google Scholar 

  62. Gymer R W, Friend R H, Ahmed H, Holmes A B. Optical and electrical assessment of an electro-optical intensity modulator from the conjugated polymer poly(2,5-dimethoxy-p-phenylenevinylene). Synthetic Metals, 1994, 67, 299–302.

    Article  Google Scholar 

  63. John H, Bauer R, Espindola P, Sonar P, Heinze J, Műllen K. 3D–Hybrid networks with controllable electrical conductivity from the electrochemical deposition of terthio-phene–functionalized polyphenylene dendrimers. Angewandte Chemie International Edition, 2005, 44, 2447–2451.

    Article  Google Scholar 

  64. Chen X, Dam M A, Ono K, Mal A, Shen H, Nutt S R, Sheran K, Wudl F. A thermally re-mendable cross-linked polymeric material. Science, 2002, 295, 1698–1702.

    Article  Google Scholar 

  65. Stille J K, Noren G K. Catenation and kinetics of the Di-els-Alder step-growth reaction in the synthesis of phenylated polyphenylenes. Macromolecules, 1972, 5, 49–55.

    Article  Google Scholar 

  66. Stille J K, Rakutis R O, Mukamal H, Harris F W. Diels-Alder polymerizations. I V. Polymers containing short phenylene blocks connected by alkylene units. Macromolecules, 1968, 1, 431–436.

    Article  Google Scholar 

  67. Pratama P A, Sharifi M, Peterson A M, Palmese G R. Room temperature self-healing thermoset based on the Diels-Alder reaction. ACS Applied Materials & Interfaces, 2013, 5, 12425–12431.

    Article  Google Scholar 

  68. Stevens M, Jenkins A. Crosslinking of polystyrene via pendant maleimide groups. Journal of Polymer Science: Polymer Chemistry Edition, 1979, 17, 3675–3685.

    Google Scholar 

  69. Chujo Y, Sada K, Saegusa T. Reversible gelation of poly-oxazoline by means of Diels-Alder reaction. Macromole-cules, 1990, 23, 2636–2641.

    Article  Google Scholar 

  70. Canary S A, Stevens M P. Thermally reversible crosslinking of polystyrene via the furan-maleimide Diels-Alder reaction. Journal of Polymer Science Part A: Polymer Chemistry, 1992, 30, 1755–1760.

    Article  Google Scholar 

  71. Laita H, Boufi S, Gandini A. The application of the Di-els-Alder reaction to polymers bearing furan moieties. 1. Reactions with maleimides. European Polymer Journal, 1997, 33, 1203–1211.

    Article  Google Scholar 

  72. Gousse C, Gandini A, Hodge P. Application of the di-els-alder reaction to polymers bearing furan moieties. 2. Diels-Alder and Retro-Diels-Alder reactions involving furan rings in some styrene copolymers. Macromolecules, 1998, 31, 314–321.

    Article  Google Scholar 

  73. Jones J R, Liotta C L, Collard D M, Schiraldi D A. Cross-Linking and modification of poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate) by Diels-Alder reactions with maleimides. Macromolecules, 1999, 32, 5786–5972.

    Article  Google Scholar 

  74. Imai Y, Itoh H, Naka K, Chujo Y. Thermally reversible IPN organic-inorganic polymer hybrids utilizing the Diels-Alder reaction. Macromolecules, 2000, 33, 4343–4346.

    Article  Google Scholar 

  75. Gheneim R, Perez-Berumen C, Gandini A. Diels-Alder Reactions with novel polymeric dienes and dienophiles: synthesis of reversibly cross-linked elastomers. Macro-molecules, 2002, 35, 7246–7253.

    Article  Google Scholar 

  76. Liu Y, Hsieh C, Chen Y. Thermally reversible cross-linked polyamides and thermoresponsive gels by means of Di-els-Alder reaction. Polymer, 2006, 47, 2581–2586.

    Article  Google Scholar 

  77. Liu Y, Chen Y. Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides. Macromolecular Chemistry and Physics, 2007, 208, 224–232.

    Article  Google Scholar 

  78. Gandini A, Belgacem M N. Furans in polymer chemistry. Progress in Polymer Science, 1997, 22, 1203–1379.

    Article  Google Scholar 

  79. Zhang Y, Broekhuis A A, Picchioni F. Thermally self–healing polymeric materials: The next step to recycling thermoset polymers? Macromolecules, 2009, 42, 1906–1912.

    Article  Google Scholar 

  80. Stille J K, Plummer L. Polymerization by the Diels-Alder Reaction. The Journal of Organic Chemistry, 1961, 26, 4026–4029.

    Article  Google Scholar 

  81. Malcolm P S. Diels-Alder polymer of N-(2-anthryl) maleimide. Journal of Polymer Science: Polymer Letters Edition, 1984, 22, 467–471.

    Google Scholar 

  82. Mircea G, Georgiana C. Copolymerization of a bisanthra-cene compound with bismaleimides by Diels-Alder cycloaddition. Polymer International, 2001, 50, 1375–1378.

    Article  Google Scholar 

  83. Syrett J A, Mantovani G, Barton W R S, Price D. Haddleton D M. Self-healing polymers prepared via living radical polymerization. Polymer Chemistry, 2010, 1, 102–106.

    Article  Google Scholar 

  84. Sijbesma R P, Beijer F H, Brunsveld L, Folmer B J, Hirschberg J K, Lange R F, Lowe J K, Meijer E. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science, 1997, 278, 1601–1604.

    Article  Google Scholar 

  85. Burnworth M, Tang L, Kumpfer J R, Duncan A J, Beyer F L, Fiore G L, Rowan S J, Weder C. Optically healable su-pramolecular polymers. Nature, 2011, 472, 334–337.

    Article  Google Scholar 

  86. Holten-Andersen N, Harrington M J, Birkedal H, Lee B P, Messersmith P B, Lee K Y C, Waite J H. PH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2651–2655.

    Article  Google Scholar 

  87. Nakahata M, Takashima Y, Yamaguchi H, Harada A. Re-dox-responsive self-healing materials formed from host-guest polymers. Nature Communications, 2011, 2, 511.

    Article  Google Scholar 

  88. Chen Y, Kushner A M, Williams G A, Guan Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nature Chemistry, 2012, 4, 467–472.

    Article  Google Scholar 

  89. Cordier M P, Soulie-Ziakovic C, Tournilhac F, Leibler L. Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46, 7925–7936.

    Article  Google Scholar 

  90. Montarnal D, Tournilhac F, Hidalgo M, Couturier J L, Leibler L. Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. Journal of the American Chemical Society, 2009, 131, 7966–7967.

    Article  Google Scholar 

  91. Kim J S, Eisenberg A. Introduction to Ionomers, John Wiley & Sons, New York, USA, 1998.

    Google Scholar 

  92. Mauritz K A, Tant M R, Wilkes G L. Ionmers: Synthesis, Structure, Properties and Applications, Chapman and Hall, New York, USA, 1997.

    Google Scholar 

  93. Varley R J, Zwaag S V D. Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration. Acta Materialia, 2008, 56, 5737–5750.

    Article  Google Scholar 

  94. Herbst F, Döhler D, Michael P, Binder W H. Self-healing polymers via supramolecular forces macromolecular. Review Rapid Communications, 2013, 34, 203–220.

    Article  Google Scholar 

  95. Freitas L L L, Stadler R. Thermoplastic elastomers by hydrogen bonding. 3. Interrelations between molecular parameters and rheological properties. Macromolecules, 1987, 20, 2478–2485.

    Article  Google Scholar 

  96. Stadler R, Freitas L L L. Thermoplastic elastomers by hydrogen bonding 1. Rheological properties of modified polybutadiene. Colloid and Polymer Science, 1986, 264, 773–778.

    Article  Google Scholar 

  97. Kim Y H, Wool R P. A theory of healing at a polymer-polymer interface. Macromolecules, 1983, 16, 1115–1120.

    Article  Google Scholar 

  98. Boiko Y M, Guérin G, Marikhin V A, Prud’homme R E. Healing of interfaces of amorphous and semi-crystalline poly(ethylene terephthalate) in the vicinity of the glass transition temperature. Polymer, 2001, 42, 8695–8702.

    Article  Google Scholar 

  99. Brunsveld L, Folmer B J B, Sijbesma R P, Meijer E W. Supramolecular polymers. Chemical Reviews, 2001, 101, 4071–4097.

    Article  Google Scholar 

  100. Ciferri A. Supramolecular polymerizations. Macromolecu-lar Rapid Communications, 2002, 23, 511–529.

    Article  Google Scholar 

  101. Perez-Garcia L, Amabilino D B. Spontaneous resolution, whence and whither: from enantiomorphic solids to chiral liquid crystals, monolayers and macro- and supra-molecular polymers and assemblies. Chemical Society Reviews, 2007, 36, 941–967.

    Article  Google Scholar 

  102. Sivakova S, Rowan S J. Nucleobases as supramolecular motifs. Chemical Society Reviews, 2005, 34, 9–21.

    Article  Google Scholar 

  103. Hoeben F J M, Jonkheijm P, Meijer E W, Schenning A P H J. About supramolecular assemblies of π–conjugated systems. Chemical Reviews, 2005, 105, 1491–1546.

    Article  Google Scholar 

  104. Swiegers G F, Malefetse T J. New self–assembled structural motifs in coordination. Chemistry Chemical Reviews, 2000, 100, 3483–3537.

    Article  Google Scholar 

  105. Burattini S, Colquhoun H M, Fox J D, Friedmann D, Greenland B W, Harris P J F, Hayes W, Mackay M E, Rowan S J. A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor π–π stacking interactions. Chemical Communications, 2009, 6717–6719.

    Google Scholar 

  106. Burattini S, Colquhoun H M, Greenland B W, Hayes W. A novel self-healing supramolecular polymer system. Faraday Discussions, 2009, 143, 251–264.

    Article  Google Scholar 

  107. Prins L J, Reinhoudt D N, Timmerman P. Noncovalent synthesis using hydrogen bonding. Angewandte Chemie International Edition, 2001, 40, 2382–2426.

    Article  Google Scholar 

  108. Folmer B J B, Sijbesma R P, Versteegen R M, Rijt J A J, Meijer E W. Supramolecular polymer materials: Chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Advanced Materials, 2000, 12, 874–878.

    Article  Google Scholar 

  109. Feldman K E, Kade M J, Greef T F A, Meijer E W, Kramer E J, Hawker C J. Polymers with multiple hydrogen-bonded end groups and their blends. Macromolecules, 2008, 41, 4694–4700.

    Article  Google Scholar 

  110. Wietor J L, Sijbesma R P. A self-healing elastomer. Angewandte Chemie International Edition, 2008, 47, 8161–8163.

    Article  Google Scholar 

  111. Greef T F A D, Smulders M M J, Wolffs M, Schenning A, Sijbesma R P, Meijer E W. Supramolecular polymerization. Chemical Reviews, 2009, 109, 5687–5754.

    Article  Google Scholar 

  112. Park T, Zimmerman S C. Formation of a miscible su-pramolecular polymer blend through self-assembly mediated by a quadruply hydrogen-bonded heterocomplex. Journal of the American Chemical Society, 2006, 128, 11582–11590.

    Article  Google Scholar 

  113. Beijer F H, Kooijman H, Spek A L, Sijbesma R P, Meijer E W. Self-complementarity achieved through quadruple hydrogen bonding. Angewandte Chemie International Edition, 1998, 37, 75–78.

    Article  Google Scholar 

  114. Beijer F H, Sijbesma R P, Kooijman H, Spek A L, Meijer E W. Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding. Journal of the American Chemical Society, 1998, 120, 6761–6769.

    Article  Google Scholar 

  115. Wang X L, Liu X J, Zhou F, Liu W M. Self-healing su-peramphiphobicity. Chemical Communications, 2011, 47, 2324–2326.

    Article  Google Scholar 

  116. Wenzel R N. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28, 988–994.

    Article  Google Scholar 

  117. Cassie A B D, Baxter S. Wettability of porous surfaces. Transactions of the Faraday Society, 1944, 40, 546–551.

    Article  Google Scholar 

  118. Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras R H A. Mechanically durable superhydrophobic surfaces. Advanced Materials, 2011, 23, 673–678.

    Article  Google Scholar 

  119. Su C H, Xu Y Q, Gong F, Wang F S, Li C F. The abrasion resistance of a superhydrophobic surface comprised of polyurethane elastomer. Soft Matter, 2010, 6, 6068–6071.

    Article  Google Scholar 

  120. Li J, Liu X H, Ye Y P, Zhou H D, Chen J M. A simple solution–immersion process for the fabrication of superhydro-phobic cupric stearate surface with easy repairable property. Applied Surface Science, 2011, 258, 1772–1775.

    Article  Google Scholar 

  121. Xue C H, Ma J Z. Long-lived superhydrophobic surfaces. Journal of Materials Chemistry A, 2013, 1, 4146–4161.

    Article  Google Scholar 

  122. Jin H, Tian X L, Ikkala O, Ras R H A. Preservation of su-perhydrophobic and superoleophobic properties upon wear damage. ACS Applied Materials & Interfaces, 2013, 5, 485–488.

    Article  Google Scholar 

  123. Li Y, Li L, Sun J G. Bioinspired self–healing superhydro-phobic coatings. Angewandte Chemie, 2010, 49, 6129–6133.

    Article  Google Scholar 

  124. Liu Q Z, Wang X L, Yu B, Liu W M, Xue Q J, Zhou F. Self–healing surface hydrophobicity by consecutive release of hydrophobic molecules from mesoporous silica. Lang-muir, 2012, 28, 5845–5849.

    Article  Google Scholar 

  125. Wang H X, Xue Y H, Ding J, Feng L F, Wang G, Lin T. Durable, self-healing superhydrophobic and superoleopho-bic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angewandte Chemie International Edition, 2011, 50, 11433–11436.

    Article  Google Scholar 

  126. Zhu D D, Lu X M, Lu Q H. Electrically conductive pedot coating with self-healing superhydrophobicity. Langmuir, 2014, 30, 4671–4677.

    Article  Google Scholar 

  127. Puretskiy N, Stoychev G, Synytska A, Ionov L. Surfaces with self-repairable ultrahydrophobicity based on self-organizing freely floating colloidal particles. Langmuir, 2012, 28, 3679–3682.

    Article  Google Scholar 

  128. Wang H X, Zhou H, Gestos A, Fang J, Lin T. Robust, Su-peramphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Applied Materials & Interfaces, 2013, 5, 10221–10226.

    Article  Google Scholar 

  129. Williams K A, Boydston A J, Bielawski C W. Towards electrically conductive, self-healing materials. Journal of the Royal Society Interface, 2007, 4, 359–362.

    Article  Google Scholar 

  130. Li Y, Chen S S, Wu M C, Sun J Q. Polyelectrolyte Multilayers impart healability to highly electrically conductive films. Advanced Materials, 2012, 24, 4578–4582.

    Article  Google Scholar 

  131. Blaiszik B J, Kramer S L B, Grady M E, McIlroy D A, Moore J S, Sottos N R, White S R. Autonomic restoration of electrical conductivity. Advanced Materials, 2012, 24, 398–401.

    Article  Google Scholar 

  132. Tee B C -K, Wang C, Allen R, Bao Z N. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnology, 2012, 7, 825–832.

    Article  Google Scholar 

  133. Wang C, Wu H, Chen Z, McDowell M T, Cui Y, Bao Z N. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chemistry, 2013, 5, 1042–1048.

    Article  Google Scholar 

  134. Odom S A, Chayanupatkul S, Blaiszik B J, Zhao O, Jackson A C, Braun P V, Sottos N R, White S R, Moore J S. A self-healing conductive ink. Advanced Materials, 2012, 24, 2578–2581.

    Article  Google Scholar 

  135. Jackson A C, Bartelt J A, Braun P V. Transparent self-healing polymers based on encapsulated plasticizers in a thermoplastic matrix. Advanced Functional Materials, 2011, 21, 4705–4711.

    Article  Google Scholar 

  136. Stankiewicz A, Szczygieł I, Szczygieł B. Self-healing coatings in anti-corrosion applications. Journal of Materials Science, 2013, 48, 8041–8051.

    Article  Google Scholar 

  137. Zheludkevich M L, Tedim J, Ferreira M G S. “Smart” coatings for active corrosion protection based on multi-functional micro and nanocontainers. Electrochimica Acta, 2012, 82, 314–323.

    Article  Google Scholar 

  138. Samadzadeh M, Boura S H, Peikari M, Kasiriha S M, Ashrafi A. A review on self-healing coatings based on mi-cro/nanocapsules. Progress in Organic Coatings, 2010, 68, 159–164.

    Article  Google Scholar 

  139. Kowalski D, Ueda M, Ohtsuka T. Self-healing ion-permselective conducting polymer coating. Journal of Materials Chemistry, 2010, 20, 7630–7633.

    Article  Google Scholar 

  140. Zheludkevich M L, Tedim J, Freire C S R, Fernandes S C M, Kallip S, Lisenkov A, Gandini A, Ferreira M G S. Self-healing protective coatings with “green” chitosan based pre-layer reservoir of corrosion inhibitor. Journal of Materials Chemistry, 2011, 21, 4805–4812.

    Article  Google Scholar 

  141. Suryanarayana C, Rao K C, Kumar D. Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Progress in Organic Coatings, 2008, 63, 72–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Yu or Feng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Liu, Z., Wang, D. et al. Bioinspired Self-Healing Organic Materials: Chemical Mechanisms and Fabrications. J Bionic Eng 12, 1–16 (2015). https://doi.org/10.1016/S1672-6529(14)60095-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60095-0

Keywords

Navigation