Skip to main content
Log in

Biomechanics of Musculoskeletal System and Its Biomimetic Implications: A Review

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Biological musculoskeletal system (MSK), composed of numerous bones, cartilages, skeletal muscles, tendons, ligaments etc., provides form, support, movement and stability for human or animal body. As the result of million years of selection and evolution, the biological MSK evolves to be a nearly perfect mechanical mechanism to support and transport the human or animal body, and would provide enormously rich resources to inspire engineers to innovate new technology and methodology to develop robots and mechanisms as effective and economical as the biological systems. This paper provides a general review of the current status of musculoskeletal biomechanics studies using both experimental and computational methods. This includes the use of the latest three-dimensional motion analysis systems, various medical imaging modalities, and also the advanced rigid-body and continuum mechanics musculoskeletal modelling techniques. Afterwards, several representative biomimetic studies based on ideas and concepts inspired from the structures and biomechanical functions of the biological MSK are discussed. Finally, the major challenges and also the future research directions in musculoskeletal biomechanics and its biomimetic studies are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van De Graaff K M, Strete D, Creek C H. Human Anatomy, 6th ed, McGraw Hill Higher Education, USA, 2001.

    Google Scholar 

  2. Nordin M, Frankel V H. Basic Biomechanics of Muscu-loskeletal System, 3rd ed, Lippincott Williams & Wilkins, Baltimore, USA, 2001.

    Google Scholar 

  3. Sharp N. Timed running speed of a cheetah (Acinonyx jubatus). Journal of Zoology, 1997, 241, 493–494.

    Article  Google Scholar 

  4. Hudson P E, Corr S A, Payne-Davis R C, Clancy S N, Lane E, Wilson A M. Functional anatomy of the cheetah (Acinoyx jubatus) hindlimb. Journal of Anatomy, 2011, 218, 363–374.

    Article  Google Scholar 

  5. Götzen N, Cross A R, Ifju P G, Rapoff A J. Understanding stress concentration about a nutrient foramen. Journal of Biomechanics, 2003, 36, 1511–1521.

    Article  Google Scholar 

  6. Ker R F, Bennett M B, Bibby S R, Kester R C, Alexander R M. The spring in the arch of the human foot. Nature, 1987, 325, 147–149.

    Article  Google Scholar 

  7. Carrier D R, Heglund N C, Earls K D. Variable gearing during locomotion in the human musculoskeletal system. Science, 1994, 265, 651–653.

    Article  Google Scholar 

  8. Ren L, Howard D, Ren L Q, Nester C, Tian L M. A phase dependent Hypothesis for locomotor functions of human foot complex. Journal of Bionic Engineering, 2008, 5, 175–180.

    Article  Google Scholar 

  9. Pfeiffer F, Inoue H. Walking: Technology and biology. Philosophical Transactions of the Royal Society A: Physical, Mathematical and Engineering Sciences, 2007, 365, 3–9.

    Article  Google Scholar 

  10. Dillmann R, Albiez J, Gassmann B, Kerscher T, Zöllner M. Biologically inspired walking machines: Design, control and perception. Philosophical Transactions of the Royal Society A: Physical, Mathematical and Engineering Sciences, 2007, 365, 133–151.

    Article  MathSciNet  Google Scholar 

  11. Hirose M, Ogawa K. Honda humanoid robots development. Philosophical Transactions of the Royal Society A: Physical, Mathematical and Engineering Science, 2007, 365, 11–19.

    Article  Google Scholar 

  12. Kimura H, Fukuoka Y, Cohen A H. Biologically inspired adaptive walking of a quadruped robot. Philosophical Transactions of the Royal Society A: Physical, Mathematical and Engineering Sciences, 2007, 365, 153–170.

    Article  Google Scholar 

  13. Lim H O, Takanishi A. Biped walking robots created at Waseda University: WL and WABIAN family. Philosophical Transactions of the Royal Society A: Physical, Mathematical and Engineering Sciences, 2007, 365, 49–64.

    Article  Google Scholar 

  14. Ren L, Butler M, Miller C, Schwerda D, Fischer MS, Hutchinson JR. The limb segment and joint kinematics of Asian (Elephas maximus) and African (Loxodonta africana) elephants. Journal of Experimental Biology, 2008, 211, 2735–2751.

    Article  Google Scholar 

  15. Ren L, Miller C, Lair R, Hutchinson J R. Integration of biomechanical compliance, leverage, and power in elephant limbs. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2010, 107, 7078–7082.

    Article  Google Scholar 

  16. Cappozzo A, Della Croce U, Leardini A. Chiarid L. Human movement analysis using stereophotogrammetry - Part 1: Theoretical background. Gait and Posture, 2005, 21, 186–196.

    Google Scholar 

  17. Ren L, Jones R K, Howard D. Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. Journal of Biomechanics, 2008, 41, 2750–2759.

    Article  Google Scholar 

  18. Arndt A, Wolf P, Liu A, Nester C, Stacoff A, Jones R, Lundgren P, Lundberg A. Intrinsic foot kinematics measured in vivo during the stance phase of slow running. Journal of Biomechanics, 2007, 40, 2672–2678.

    Article  Google Scholar 

  19. Cappozzo A. Gait analysis methodology. Human Movement Science, 1984, 3, 27–54.

    Article  Google Scholar 

  20. Allard P, Blanchi J P, Aissaoui R. Base of three-dimensional reconstruction. In: Allard P, Stokes I A F, Blanchi J P (eds). Three-Dimensional Analysis of Human Movement, Human Kinetics, Champaign, IL, USA, 1995, 19–40.

    Google Scholar 

  21. Kadaba M P, Ramakrishnan H K, Wootten M E. Measurement of lower extremity kinematics during level walking. Journal of Orthopaedic Research, 1990, 8, 383–392.

    Article  Google Scholar 

  22. Pedotti A, Ferrigno G. Optoelectronic-based system. In: Allard P, Stokes I A F, Blanchi J P (eds). Three-Dimensional Analysis of Human Movement, Human Kinetics, Champaign, IL, USA, 1995, 57–77.

    Google Scholar 

  23. Cappozzo A, Catani F, Leardini M, Benedetti G, Della Croce U. Position and orientation in space of bones during movement: Experimental artifacts. Clinical Biomechanics, 1996, 11, 90–100.

    Article  Google Scholar 

  24. Fulle J, Liu J, Murphy M C, Mann R W. A comparison of lowerextremity skeletal kinematics measured using skin-and pin-mounted markers. Human Movement Science 1997, 16, 219–242.

    Article  Google Scholar 

  25. Sati M, De Guise J A, Larouche S L, Drouin G. Quantitative assessment of skin marker movement at the knee. The Knee, 1996, 3, 121–138.

    Article  Google Scholar 

  26. Krigslund R, Dosen S, Popovski P, Dideriksen J L, Pedersen G F, Farina D. A novel technology for motion capture using passive UHF RFID tags. IEEE Transactions on Biomedical Engineering, 2013, 60, 1453–1457.

    Article  Google Scholar 

  27. Mündermann L, Corazza S, Andriacchi T P. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. Journal of NeuroEngineering and Rehabilitation, 2006, 15, 3–6.

    Google Scholar 

  28. Nigg B M, Herzog W. Biomechanics of the Musculo-skeletal System, 2nd ed, John Wiley and Sons Ltd, New York, USA, 1999.

    Google Scholar 

  29. Siegler S, Liu W. Inverse dynamics in human locomotion. In: Allard P, Cappozzo A, Lundberg A, Vaughan C (eds). Three-dimensional Analysis of Human Locomotion, John Wiley and Sons Ltd, New York, USA, 1997, 191–209.

    Google Scholar 

  30. Winter D A. Biomechanics and Motor Control of Human Movement, 3rd ed, John Wiley and Sons Ltd, New York, USA, 2004.

    Google Scholar 

  31. Cavanagh P R, Rodgers M M, Iiboshi A. Pressure distribution under symptom-free feet during barefoot standing. Foot & Ankle, 1987, 7, 262–276.

    Article  Google Scholar 

  32. Groundy M, Blackburn T P A, McLeish R D, Smidt L. An investigation of the centers of pressure under the foot while walking. Journal of Bone and Joint Surgery, 1975, 57, 98–103.

    Google Scholar 

  33. Bates K T, Savage R, Pataky T C, Morse S A, Webster E, Falkingham P L, Ren L, Qian Z H, Collins D, Bennett M R, McClymont J, Crompton R H. Does footprint depth correlate with foot motion and pressure. Journal of the Royal Society Interface, 2013, 10, 20130009.

    Article  Google Scholar 

  34. Meyring S, Diehl R R, Milani T L, Hennig E M, Berlit P. Dynamic plantar pressure distribution measurement in hemiparetic patients. Clinical Biomechanics, 1997, 12, 60–65.

    Article  Google Scholar 

  35. Gebruers N, Vanroy C, Truijen S, Engelborghs S, de Deyn P P. Monitoring of physical activity after stroke: A systematic review of accelerometry-based measures. Archives of Physical Medicine and Rehabilitation, 2010, 91, 288–297.

    Article  Google Scholar 

  36. Yang C C, Hsu Y L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors, 2010; 10, 7772–7788.

    Article  Google Scholar 

  37. Kavanagh J J, Menz H B. Accelerometry: A technique for quantifying movement patterns during walking. Gait and Posture, 2008, 28, 1–15.

    Article  Google Scholar 

  38. Mathie M J, Coster A C, Lovell N H, Celler B G. Accelerometry: Providing an integrated, practical method for longterm, ambulatory monitoring of human movement. Physiological Measurement, 2004, 25, 1–20.

    Article  Google Scholar 

  39. Pfau T, Spence A, Starke S, Ferrari M, Wilson A. Modern riding style improves horse racing times. Science, 2009, 325, 289.

    Article  Google Scholar 

  40. Ren L, Hutchinson J R. The three-dimensional locomotor dynamics of African (Loxodonta africana) and Asian (Elephas maximus) elephants reveal a smooth gait transition at moderate speed. Journal of the Royal Society: Interface, 2008, 5, 195–211.

    Google Scholar 

  41. de Luca C J. The use of surface electromyography in biomechanics. Journal of Applied Biomechanics, 1997, 13, 135–163.

    Article  Google Scholar 

  42. Graţiela-Flavia D, Flavia R, Emilia G. Surface electromyography in biomechanics: Application and signal analysis aspects. Journal of Physical Education and Sport, 2009, 25, 1–10.

    Google Scholar 

  43. Konrad P. The ABC of EMG: A Practical Introduction to Kinesiological Electromyography (Version 1.0), Noraxon Inc, USA, 2005.

    Google Scholar 

  44. de Luca C J, Gilmore L D, Kuznetsov M, Roy S H. Filtering the surface EMG signal: Movement artifact and baseline noise contamination. Journal of Biomechanics, 2010, 43, 1573–1579.

    Article  Google Scholar 

  45. von Tscharner V. Intensity analysis in time-frequency space of surface myoelectric signals by wavelets of specified resolution. Journal of Electromyography & Kinesiology, 2000, 10, 433–445.

    Article  Google Scholar 

  46. Fornage B D. The case for ultrasound of muscles and tendons. Seminars in Musculoskeletal Radiology, 2000, 4, 375–391.

    Article  Google Scholar 

  47. Fukunaga T, Kawakami Y, Kubo K, Kanehisa H. Muscle and tendon interaction during human movements. Exercise and Sport Sciences Reviews, 2002, 30, 106–110.

    Article  Google Scholar 

  48. Kawakami Y, Fukunaga T. New insights into in vivo human skeletal muscle function. Exercise and Sport Sciences Reviews, 2006, 34, 16–21.

    Article  Google Scholar 

  49. Hashimoto B E, Kramer D J, Wiitala L. Application of musculoskeletal sonography. Journal of Clinical Ultrasound, 1999, 27, 293–299.

    Article  Google Scholar 

  50. Pillen S, van Alfen N. Skeletal muscle ultrasound. Neurological Research, 2011, 33, 1016–1024.

    Article  Google Scholar 

  51. Miller D I. A Computer Simulation Model of the Airborne Phase of Diving, Pennsylvania State University, Pennsylvania, USA, 1970.

    Google Scholar 

  52. Passerello C E, Huston R L. Human attitude control. Journal of Biomechanics, 1971, 4, 95–102.

    Article  Google Scholar 

  53. Hatze H. A comprehensive model for human motion simulation and its application to the take-off phase of the long jump. Journal of Biomechanics, 1981, 14, 135–142.

    Article  Google Scholar 

  54. Brand R A, Pedersen D R, Friederich J A. The sensitivity of muscle force predictions to changes in physiologic cross-sectional area. Journal of Biomechanics, 1986, 19, 589–596.

    Article  Google Scholar 

  55. Friederich J A, Brand R A. Muscle fiber architecture in the human lower limb. Journal of Biomechanics, 1990, 23, 91–95.

    Article  Google Scholar 

  56. Zajac F E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering, 1989, 17, 359–410.

    Google Scholar 

  57. Amankwah K, Triolo R, Kirsch R, Audu M. A model-based study of passive joint properties on muscle effort during static stance. Journal of Biomechanics, 2006, 39, 2253–2263.

    Article  Google Scholar 

  58. Delp S L, Loan J P, Hoy M G, Zajac F E, Topp E L, Rosen J M. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering, 1990, 37, 757–767.

    Article  Google Scholar 

  59. Delp S L, Loan J P. A graphics-based software system to develop and analyze models of musculoskeletal structures. Computers in Biology and Medicine, 1995, 25, 21–34.

    Article  Google Scholar 

  60. Audu M L, Kirsch R F, Triolo R J. A computational technique for determining the ground reaction forces in human bipedal stance. Journal of Applied Biomechanics, 2003, 19, 361–371.

    Article  Google Scholar 

  61. Anderson F C, Pandy M G. Dynamic optimisation of human walking. Journal of Biomechanical Engineering, 2001, 123, 381–390.

    Article  Google Scholar 

  62. Jenkyn T R, Nicol A C. A multisegment kinematic model of the foot with a novel definition of forefoot motion for use in clinical gait analysis during walking. Journal of Biomechanics, 2007, 40, 3271–3278.

    Article  Google Scholar 

  63. Nester C J, Liu A M, Ward E, Howard D, Cocheba J, Derrick T, Paterson P. In vitro study of foot kinematics using a dynamic walking cadaver model. Journal of Biomechanics, 2007, 40, 1927–1937.

    Article  Google Scholar 

  64. Ren L, Howard D, Ren L Q, Tian L M, Nester C J. A generic analytical foot rollover model for predicting translational ankle kinematics in gait simulation studies. Journal of Biomechanics, 2010, 43, 194–202.

    Article  Google Scholar 

  65. Neptune R R, Kautz S A, Zajac F E. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during normal walking. Journal of Biomechanics, 2001, 34, 1387–1398.

    Article  Google Scholar 

  66. Pandy M G. Computer modeling and simulation of human movement. Annual Review Biomedical Engineering, 2001, 3, 245–273.

    Article  Google Scholar 

  67. Winters J M. Hill-based muscle models: A systems engineering perspective. In: Winters J M, Woo S L-Y (eds). Multiple Muscle Systems: Biomechanics and Movement Organization, Spring-Verlag, New York, USA, 1990, 69–93.

    Chapter  Google Scholar 

  68. Pandy M G, Zajac F E, Sim E, Levine W S. An optimal control model for maximum-height human jumping. Journal of Biomechanics, 1990, 23, 1185–1198.

    Article  Google Scholar 

  69. Delp S, Loan J. A computational framework for simulating and analyzing human and animal movement. Computing in Science and Engineering, 2000, 2, 46–55.

    Article  Google Scholar 

  70. Herrmann A M, Delp S L. Moment arm and force-generating capacity of the extensor carpi ulnaris after transfer to the extensor carpi radialis brevis. Journal of Hand Surgery, 1999, 24, 1083–1090.

    Article  Google Scholar 

  71. Loren G J, Shoemaker S D, Burkholder T J, Jacobson M D, Friden J, Leiber R L. Human wrist motors: Biomechanical design and application to tendon transfers. Journal of Biomechanics, 1996, 29, 331–342.

    Article  Google Scholar 

  72. Zajac F E, Gordon M E. Determining muscle’s force and action in multi-articular movement. Exercise Sport Science Review, 1989, 17, 187–230.

    Google Scholar 

  73. Hollerbach J M, Flash T. Dynamic interactions between limb segments during planar arm movement. Biological Cybernetics, 1982, 44, 67–77.

    Article  Google Scholar 

  74. Zajac F E, Neptune R R, Kautz S A. Biomechanics and muscle coordination of human walking, Part I: Introduction to concepts, power transfer, dynamics and simulations. Gait and Posture, 2003, 16, 215–232.

    Article  Google Scholar 

  75. Zajac F E, Neptune R R, Kautz S A. Biomechanics and muscle coordination of human walking, Part II: Lessons from dynamical simulations and clinical implications. Gait and Posture, 2003, 17, 1–17.

    Article  Google Scholar 

  76. Ren L, Howard D, Kenney L. Computational models to synthesize human walking. Journal of Bionic Engineering, 2006, 3, 127–138.

    Article  Google Scholar 

  77. Davoodi R, Urata C, Hauschild M, Khachani M, Loeb G E. Model-based development of neural prostheses for movement. IEEE Transaction of Biomedical Engineering, 2007, 54, 1909–1918.

    Article  Google Scholar 

  78. McKay J L, Burkholder T J, Ting L H. Biomechanical capabilities influence postural control strategies in the cat hindlimb. Journal of Biomechanics, 2007, 40, 2254–2260.

    Article  Google Scholar 

  79. Berniker M, Jarc A, Bizzi E, Tresch M C. Simplified and effective motor control based on muscle synergies to exploit musculoskeletal dynamics. Proceedings of the National Academy of Sciences, USA, 2009, 106, 7601–7606.

    Article  Google Scholar 

  80. Pai D K. Muscle mass in musculoskeletal models. Journal of Biomechanics, 2010, 43, 2093–2098.

    Article  Google Scholar 

  81. Ramsay J W, Hunter B V, Gonzalez R V. Muscle moment arm and normalized moment contributions as reference data for musculoskeletal elbow and wrist joint models. Journal of Biomechanics, 2009, 42, 463–473.

    Article  Google Scholar 

  82. Ren L, Jones R, Howard D. Dynamic analysis of load carriage biomechanics during human level walking. Journal of Biomechanics, 2005, 38, 853–863.

    Article  Google Scholar 

  83. Delp S L, Anderson F C, Arnold A S, Loan P, Habib A, John C T, Guendelman E, Thelen D G. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions of Biomedical Engineering, 2007, 54, 1940–1950.

    Article  Google Scholar 

  84. Saraswat P, Andersen M S, Macwilliams B A. A muscu-loskeletal foot model for clinical gait analysis. Journal of Biomechanics, 2010, 43, 1645–1652.

    Article  Google Scholar 

  85. Ren L, Jones R, Howard D. Predictive modelling of human walking over a complete gait cycle. Journal of Biome-chanics, 2007, 40, 1567–1574.

    Article  Google Scholar 

  86. Moroney S P, Schultz A B, Miller J A, Andersson G B. Load-displacement properties of lower cervical spine motion segments. Journal of Biomechanics, 1988, 21, 769–779.

    Article  Google Scholar 

  87. Shirazi-Adl A, M Ahmed A, Shrivastava S C. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. Journal of Biomechanics, 1986, 19, 331–350.

    Article  Google Scholar 

  88. Yoganandan N, Kumaresan S, Voo L, Pintar F A. Finite element applications in human cervical spine modelling. Spine, 1996, 21, 1824–1834.

    Article  Google Scholar 

  89. Bozic K J, Keyak J H, Skinner H B, Bueff H U, Bradford D S. Three-dimensional finite element modeling of a cervical vertebra: An investigation of burst fracture mechanism. Journal of Spinal Disorders, 1994, 7, 102–110.

    Article  Google Scholar 

  90. Teo E C, Paul J P, Evans J H. Finite element stress analysis of a cadaver second cervical vertebra. Medical & Biological Engineering & Computing, 1994, 32, 236–138.

    Google Scholar 

  91. Saito T, Yamamuro T, Shikata J, Oka M, Tsutsumi S. Analysis and prevention of spinal column deformity following cervical laminectomy, pathogenetic analysis of post laminectomy deformities. Spine, 1991, 16, 494–502.

    Article  Google Scholar 

  92. Kleinberger M. Application of finite element techniques to the study of cervical spine mechanics. Proceedings of the 37th Stapp Car Crash Conference, San Antonio, Texas, USA0, 1993, 7–8, 261–272.

    Google Scholar 

  93. Voo L, Denman J A, Yoganandan N, Pintar F, Cusick J F. A 3D FE model of cervical spine with CT-based geometry. Advanced Bioengineering, 1995, 29, 323–324.

    Google Scholar 

  94. Voo L, Denman J, Kumaresan S, Yoganandan N, Pintar F A, Cusick J F. Development of 3D finite element model of the cervical spine. Advanced Bioengineering, 1995, 31, 13–14.

    Google Scholar 

  95. Goel V K, Clausen J D. Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine, 1998, 23, 684–691.

    Article  Google Scholar 

  96. Teo E C, Ng H W. First cervical vertebra (atlas) fracture mechanism studies using finite element method. Journal of Biomechanics, 2001, 34, 13–21.

    Article  Google Scholar 

  97. Puttlitz C M, Goel V K, Clark C R, Traynelis V C, Scifert J L, Grosland N M. Biomechanical rationale for the pathology of rheumatoid arthritis in the craniovertebral junction. Spine, 2000, 25, 1607–1616.

    Article  Google Scholar 

  98. Stemper B D, Kumaresan S, Yoganandan N, Pintar F A. Head-neck finite element model for motor vehicle inertial impact: Material sensitivity analysis. Biomedical Sciences Instrumentation, 2000, 36, 331–335.

    Google Scholar 

  99. Camacho D L, Nightingale R W, Myers B S. Surface friction in near-vertex head and neck impact increases risk of injury. Journal of Biomechanics, 1999, 32, 293–301.

    Article  Google Scholar 

  100. Zhang Q H, Teo E C, Ng H W. Development and validation of a C0–C7 FE complex for biomechanical study. Journal of Biomechanical Engineering, 2005, 127, 729–735.

    Article  Google Scholar 

  101. Lemmon D, Shiang T Y, Hashmi A, Ulbrecht J S, Cavanagh P R. The effect of insoles in therapeutic footwear: A finite element approach. Journal of Biomechanics, 1997, 30, 615–620.

    Article  Google Scholar 

  102. Patil K M, Braak L H, Huson A. Analysis of stresses in two-dimensional models of normal and neuropathic feet. Medical & Biological Engineering & Computing, 1996, 34, 280–284.

    Article  Google Scholar 

  103. Wu L J. Nonlinear finite element analysis for muscu-loskeletal biomechanics of medial and lateral plantar longitudinal arch of virtual Chinese human after plantar ligamentous structure failures. Clinical Biomechanics, 2007, 22, 221–229.

    Article  Google Scholar 

  104. Chu T M, Reddy N P, Padovan J. Three-dimensional finite element stress analysis of the polypropylene, ankle-foot orthosis: Static analysis. Medical Engineering and Physics, 1995, 17, 372–379.

    Article  Google Scholar 

  105. Jacob S, Patil K M, Braak L H, Huson A. Stresses in a 3D two arch model of a normal human foot. Mechanics Research Communications, 1996, 23, 387–393.

    Article  MATH  Google Scholar 

  106. Gefen A, Megido-Ravid M, Itzchak Y, Arcan M. Biomechanical analysis of the three-dimensional foot structure during gait: A basic tool for clinical applications. Journal of Biomechanical Engineering, 2000, 122, 630–639.

    Article  Google Scholar 

  107. Gefen A. Stress analysis of the standing foot following surgical plantar fascia release. Journal of Biomechanics, 2000, 35, 629–637.

    Article  Google Scholar 

  108. Gefen A. Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot. Medical Engineering and Physics, 2003, 25, 491–499.

    Article  Google Scholar 

  109. Cheung J T, Zhang M. Parametric design of pressure- relieving foot orthosis using statistics-based finite element method, Medical Engineering and Physics, 2008, 30, 269–277.

    Article  Google Scholar 

  110. Cheung J K, Zhang M, An K N. Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex. Clinical Biomechanics, 2004, 19, 839–846.

    Article  Google Scholar 

  111. Cheung J T, Zhang M, Leung A K, Fan Y B. Three-dimensional finite element analysis of the foot during standing: A material sensitivity study. Journal Biome-chanics, 2005, 38, 1045–1054.

    Article  Google Scholar 

  112. Garcia-Aznar J M, Bayod J, Rosas A, Larrainzar R, García-Bógalo R, Doblaré M, Llanos L F. Load transfer mechanism for different metatarsal geometries: A finite element study. Journal of Biomechanical Engineering, 2009, 131, 021011.

    Article  Google Scholar 

  113. Cheng H Y, Lin C L, Wang H W, Chou SW. Finite element analysis of plantar fascia under stretch: The relative contribution of windlass mechanism and Achilles tendon force. Journal of Biomechanics, 2008, 41, 1937–1944.

    Article  Google Scholar 

  114. Hsu Y C, Gung Y W, Shih S L, Feng C K, Wei S H, Yu C H, Chen C S. Using an optimization approach to design an insole for lowering plantar fascia stress: A finite element study. Annals of Biomedical Engineering, 2008, 36, 1345–1352.

    Article  Google Scholar 

  115. Chen W M, Lee T, Lee P V, Lee J W, Lee S J. Effects of internal stress concentrations in plantar soft tissue: A preliminary three-dimensional finite element analysis. Medical Engineering and Physics, 2010, 32, 324–331.

    Article  Google Scholar 

  116. Chen W M, Park J, Park S B, Shim V P, Lee T. Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise: A 3D finite element analysis, Journal of Biomechanics, 2012, 45, 1783–1789.

    Article  Google Scholar 

  117. Dai X Q, Li Y, Zhang M, Cheung J T. Effect of sock on biomechanical responses of foot during walking. Clinical Biomechanics, 2006, 21, 314–321.

    Article  Google Scholar 

  118. Qian Z H, Ren L, Ding Y, Hutchinson J R, Ren L Q. A dynamic finite element analysis of human foot complex in the sagittal plane during level walking. PLoS ONE, 2013, 8, e79424.

    Article  Google Scholar 

  119. Brown T D, DiGioia A M. A contact-coupled finite element analysis of the natural adult hip. Journal of Biomechanics, 1984, 17, 437–448.

    Article  Google Scholar 

  120. Aspeden R M. A model for function and failure of the meniscus, Engineering in Medicine, 1985, 14, 119–122.

    Article  Google Scholar 

  121. Eckstein F, Merz B, Schmid P, Putz R. The influence of geometry on the stress distribution in joints: A finite element analysis, Anatomy and Embryology, 1994, 189, 545–552.

    Article  Google Scholar 

  122. van der Helm F C T, Veeger H E J, Pronk G M, Van der Woude L H V, Rozendal R H. Geometry parameters for musculoskeletal modeling of the shoulder system. Journal of Biomechanics, 1992, 25, 129–144.

    Article  Google Scholar 

  123. Spilker R L, Donzelli P S, Mow V C. A transversely isotropic biphasic finite element model of the meniscus. Journal of Biomechanics, 1992, 25, 1027–1045.

    Article  Google Scholar 

  124. Donzelli P S, Spilker R L. A mixed penalty contact finite element formulation with applications to biphasic tissues of the knee. ASME International Mechanical Engineering Congress and Exposition, Chicago, USA, 1994, 13–14.

    Google Scholar 

  125. Donahue T L, Hull M L, Rashid M M, Jacobs C R. A finite element model of the human knee joint for the study of tibio-femoral contact. Journal of Biomechanical Engineering, 2002, 124, 273–280.

    Article  Google Scholar 

  126. Li G, Kanamori A, Woo S L. A validated three-dimensional computational model of a human knee joint. Journal of Biomechanical Engineering, 1999, 121, 657–662.

    Article  Google Scholar 

  127. Weiss J A, Gardiner J C, Ellis B J, Lujan T J, Phatak N S. Three-dimensional finite element modeling of ligaments: Technical aspects. Medical Engineering and Physics, 2005, 27, 845–861.

    Article  Google Scholar 

  128. Giori N J, Beaupre G S, Carter D R. Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. Journal of Orthopaedic Research, 1993, 11, 581–591.

    Article  Google Scholar 

  129. Matyas J R, Anton M G, Shrive N G, Frank C B. Stress governs tissue phenotype at the femoral insertion of the rabbit MCL. Journal of Biomechanics, 1995, 28, 147–157.

    Article  Google Scholar 

  130. Gardiner J C, Weiss J A, Rosenberg T D. Strain in the human medial collateral ligament during valgus loading of the knee. Clinical Orthopaedics, 2001, 391, 266–274.

    Article  Google Scholar 

  131. Kawada T, Abe T, Yamamoto K, Hirokawa S, Soejima T, Tanaka N, Inoue A. Analysis of strain distribution in the medial collateral ligament using a photoelastic coating method. Medical Engineering and Physics, 1999, 21, 279–291.

    Article  Google Scholar 

  132. Song Y, Debski R E, Musahl V, Thomas M, Woo S L. A three-dimensional finite element model of the human anterior cruciate ligament: A computational analysis with experimental validation. Journal of Biomechanics, 2004, 37, 383–390.

    Article  Google Scholar 

  133. Debski R E, Weiss J A, Newman W J, Moore S M, McMahon P J. Stress and strain in the anterior band of the inferior glenohumeral ligament during a simulated clinical exam. Journal of Shoulder and Elbow Surgery, 2005, 14, S24–S31.

    Article  Google Scholar 

  134. Limbert G, Taylor M, Middleton J. Three-dimensional finite element modelling of the human ACL: Simulation of passive knee flexion with a stressed and stress-free ACL. Journal of Biomechanics, 2004, 37, 1723–1731.

    Article  Google Scholar 

  135. Huxley A F. The mechanism of muscular contraction. Science, 1969, 164, 1356–1365.

    Article  Google Scholar 

  136. Huxley A F. Muscular contraction. Journal of Physiology, 1974, 243, 1–43.

    Article  Google Scholar 

  137. Hatze H. Myocybernetic Control Models of Skeletal Muscle: Characteristics and Applications, University of South Africa, Pretoria, South Africa, 1981.

    MATH  Google Scholar 

  138. Riek S, Chapman A E, Milner T A. Simulation of muscle force and internal kinematics of extensor carpi radialis brevis during backhand tennis stroke: Implications for injury. Clinical Biomechanics, 1999, 4, 77–83.

    Google Scholar 

  139. Stojanovic B, Kojic M, Rosic M, Tsui C P, Tang C Y. An extension of Hill’s three-component model to include different fiber types in finite element modeling of muscle. International Journal for Numerical Methods in Engineering, 2007, 71, 801–817.

    Article  MATH  Google Scholar 

  140. Tang C Y, Tsui C P, Stojanovic B, Kojic M. Finite element modelling of skeletal muscles coupled with fatigue. International Journal of Mechanical Sciences, 2007, 49, 1179–1191.

    Article  Google Scholar 

  141. Johansson T, Meier P, Blickhan R. A finite-element model for the mechanical analysis of skeletal muscles. Journal of Theoretical Biology, 2000, 206, 131–149.

    Article  Google Scholar 

  142. Yucesoy C A, Koopman B H, Huijing P A, Grootenboer H J. Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: Linked fiber-matrix mesh model. Journal of Biomechanics, 2002, 35, 1253–1262.

    Article  Google Scholar 

  143. Tsui C P, Tang C Y, Leung C P, Cheng K W, Ng Y F, Chow D H, Li C K. Active finite element analysis of skeletal muscletendon complex during isometric, shortening and lengthening contraction. Bio-Medical Materials and Engineering, 2004, 14, 271–279.

    Google Scholar 

  144. Oomens C W, Maenhout M, van Oijen C H, Drost M R, Baaijens F P. Finite element modelling of contracting skeletal muscle, Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1453–1460.

    Article  Google Scholar 

  145. Bosboom E M H, Hesselink M K C, Oomens C W J, Bouten C V C, Drost M R, Baaijens F P T. Passive transverse mechanical properties of skeletal muscle under the in vivo compression. Journal of Biomechanics, 2001, 34, 1365–1368.

    Article  Google Scholar 

  146. Blemker S S, Delp S L. Three-dimensional representation of complex muscle architectures and geometries. Annals of Biomedical Engineering, 2005, 33, 661–673.

    Article  Google Scholar 

  147. Blemker S S, Pinsky P M, Delp S L. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. Journal of Biomechanics, 2005, 38, 657–885.

    Article  Google Scholar 

  148. Blemker S S, Teran J, Sifakis E, Fedkiw R, Delp S. Fast 3D muscle simulations using a new quasi-static invertible finite element algorithm. First MIT International Symposium on Computer Simulation in Biomechanics, Cleveland, USA, 2005.

    Google Scholar 

  149. van den Bogert A J. Analysis and simulation of mechanical loads on the human musculoskeletal system. Exercise and Sport Sciences Reviews, 1994, 22, 23–51.

    Google Scholar 

  150. Gerritsen K G M, van den Bogert A J, Nachbauer W. Computer simulation of loading movement in downhill skiing: Anterior cruciate ligament injuries. Journal of Biomechanics, 1996, 29, 845–854.

    Article  Google Scholar 

  151. Neptune R R, Kautz S A. Knee joint loading in forward versus backward pedaling: Implications for rehabilitation strategies. Clinical Biomechanics, 2000, 15, 528–535.

    Article  Google Scholar 

  152. Raibert M, Blankespoor K, Nelson G, Playter R. BigDog, the rough-terrain quadruped robot. Proceeding of the 17th World Congress, the International Federation of Automatic Control, Seoul, Korea, 2008.

    Google Scholar 

  153. Flammang B E, Porter M E. Bioinspiration: Applying mechanical design to experimental biology. Integrative and Comparative Biology, 2011, 51, 128–132.

    Article  Google Scholar 

  154. Lee D V, Biewener A A. BigDog-inspired studies in the locomotion of goats and dogs. Integrative and Comparative Biology, 2011, 51, 190–202.

    Article  Google Scholar 

  155. Alexander R M. Elastic Mechanisms in Animal Movement, Cambridge University Press, Cambridge, UK, 1988.

    Google Scholar 

  156. Kato I, Ohteru S, Kobayashi H, Shirai K, Uchiyama A. Information-power machine with senses and limbs. Proceedings of the First CISM-IFTOMM Symposium on Theory and Practice of Robots and Manipulators, Udine, Italy, 1973.

    Google Scholar 

  157. Chevallereau C, Abba G, Aoustin Y, Plestan F, Westervelt E R, Canudas-de-Wit C, Grizzle J W. A testbed for advanced control theory. IEEE Control Systems Magazine, 2003, 23, 57–79.

    Article  Google Scholar 

  158. Pfeiffer F, Loffler K, Gienger M. The concept of jogging JOHNNIE. Proceedings of IEEE International Conference on Robotics and Automation, Washington DC, USA, 2002, 3129–3135.

    Google Scholar 

  159. Coleman M J, Ruina A. An uncontrolled walking toy that cannot stand still. Physical Review Letters, 1998, 80, 3658–3661.

    Article  Google Scholar 

  160. Collins S, Ruina A, Tedrake R, Wisse M. Efficient bipedal robots based on passive-dynamic walkers. Science, 2005, 307, 1082–1085.

    Article  Google Scholar 

  161. Collins S H, Wisse M, Ruina A. A 3-D passive-dynamic walking robot with two legs and knees. International Journal of Robotics Research, 2001, 20, 607–615.

    Article  Google Scholar 

  162. Wisse M. Three additions to passive dynamic walking; actuation, an upper body, and 3D stability. International Journal of Humanoid Robotics, 2005, 2, 459–478.

    Article  Google Scholar 

  163. Manoonpong P, Geng T, Kulvicius T, Porr B, Worgotter, F. Adaptive, fast walking in a biped robot under neuronal control and learning. PLoS Computational Biology, 2007, 3, e134.

    Article  Google Scholar 

  164. McGeer T. Passive dynamic walking. International Journal of Robotics Research, 1990, 9, 62–82.

    Article  Google Scholar 

  165. Iida F, Minekawa Y, Rummel J, Seyfarth A. Toward a human-like biped robot with compliant legs. Robotics and Autonomous Systems, 2009, 57, 139–144.

    Article  Google Scholar 

  166. Kedgley A E, Birmingham T, Jenkyn T R. Comparative accuracy of radiostereometric and optical tracking systems. Journal of Biomechanics, 2009, 42, 1350–1354.

    Article  Google Scholar 

  167. Shultz R, Kedgley A E, Jenkyn T R. Quantifying skin motion artifact error of the hindfoot and forefoot marker clusters with the optical tracking of a multi-segment foot model using single-plane fluoroscopy. Gait and Posture, 2011, 34, 44–48.

    Article  Google Scholar 

  168. Akbarshahi M, Schache A G, Fernandez J W, Baker R, Banks S, Pandy M G. Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. Journal of Biomechanics, 2010, 43, 1292–1301.

    Article  Google Scholar 

  169. Erdemir A, McLean S, Herzog W, van den Bogert A J. Model-based estimation of muscle forces exerted during movements. Clinical Biomechanics, 2007, 22, 131–154.

    Article  Google Scholar 

  170. Fregly B J, Besier T F, Lloyd D G, Delp S L, Banks S A, Pandy M G, D’Lima D D. Grand challenge competition to predict in vivo knee loads. Journal of Orthopedic Research, 2012, 30, 503–513.

    Article  Google Scholar 

  171. Kinney A L, Besier T F, D’Lima D D, Fregly B J. Update on grand challenge competition to predict in vivo knee loads. Journal of Biomechanical Engineering, 2013, 135, 021012.

    Article  Google Scholar 

  172. Fregly B J, Boninger M L, Reinkensmeyer D J. Personalized neuromusculoskeletal modeling to improve treatment of mobility impairments: A perspective from European research sites. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 18.

    Article  Google Scholar 

  173. Ford C M, Keaveny T M, Hayes W C. The effect of impact direction on the structural capacity of the proximal femur during falls. Journal of Bone and Mineral Research, 1996, 11, 377–383.

    Article  Google Scholar 

  174. Keyak J H, Lee I Y, Nath D S, Skinner H B. Postfailure compressive behavior of tibial trabecular bone in three anatomic directions. Journal of Biomedical Materials Research, 1996, 31, 373–378.

    Article  Google Scholar 

  175. Viceconti M, Bellingeri L, Cristofolini L, Toni A. A comparative study on different methods of automatic mesh generation of human femurs. Medical Engineering and Physics, 1998, 20, 1–10.

    Article  Google Scholar 

  176. Morgan E F, Keaveny T M. Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics, 2001, 34, 569–577.

    Article  Google Scholar 

  177. Morgan E F, Bayraktar H H, Keaveny T M. Trabecular bone modulus-density relationships depend on anatomic site. Journal of Biomechanics, 2003, 36, 897–904.

    Article  Google Scholar 

  178. Tawhai M, Bischoff J, Einstein D, Erdemir A, Guess T, Reinbolt J. Multiscale modeling in computational biomechanics. Engineering in Medicine and Biology Magazine, 2009, 28, 41–49.

    Article  Google Scholar 

  179. International Working Group on the Diabetic Foot. Apelqvist J, Bakker K, van Houtum W H, Nabuurs-Franssen M H, Schaper N C (eds). International Consensus on the Diabetic Foot, Maastricht, the Netherland, 1999.

  180. Yagihashi S, Yamagishi S, Wada R. Pathology and pathogenetic mechanisms of diabetic neuropathy: Correlation with clinical signs and symptoms. Diabetes Research and Clinical Practice, 2007, 77, S184–S189.

    Article  Google Scholar 

  181. Kwon O Y, Minor S D, Maluf K S, Mueller M J. Comparison of muscle activity during walking in subjects with and without diabetic neuropathy. Gait and Posture, 2003, 18, 105–113.

    Article  Google Scholar 

  182. Loganathan R, Bilgen M, Al-Hafez B, Smirnova I V. Characterization of alterations in diabetic myocardial tissue using high resolution MRI. International Journal of Cardiovascular Imaging, 2006, 22, 81–90.

    Article  Google Scholar 

  183. Lorenzi M, Gerhardinger C. Early cellular and molecular changes induced by diabetes in the retina. Diabetologia, 2001, 44, 791–804.

    Article  Google Scholar 

  184. Bus S A, Yang Q X, Wang J H, Smith M B, Wunderlich R, Cavanagh P R. Intrinsic muscle atrophy and toe deformity in the diabetic neuropathic foot: A magnetic resonance imaging study. Diabetes Care, 2002, 25, 1444–1450.

    Article  Google Scholar 

  185. Agoram B, Barocas V H. Coupled macroscopic and microscopic scale modeling of fibrillar tissues and tissue equivalents. Journal of Biomechanical Engineering, 2001, 123, 362–369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Qian, Z. & Ren, L. Biomechanics of Musculoskeletal System and Its Biomimetic Implications: A Review. J Bionic Eng 11, 159–175 (2014). https://doi.org/10.1016/S1672-6529(14)60033-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60033-0

Keywords

Navigation