Skip to main content
Log in

Passivation Behaviors of Super Martensitic Stainless Steel in Weak Acidic and Weak Alkaline NaCl Solutions

  • Material
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The passivation behaviors of super martensitic stainless steels (SMSS) were studied by polarization curves at passive potential of −0.1 V and in various NaCl solutions, electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) analysis. Electrochemical test results showed that, in alkaline solutions, passivation region width was wider, passivation current was smaller, and polarization resistance was greater; thus, the passive film of SMSS in alkaline solutions had better passivation behaviors than that in acidic solutions. The polarization curve and EIS of samples SMSS1 and SMSS2 were also used to study which sample had better passivation behaviors. All results demonstrated that passive film structure of SMSS1 sample was more stable, and capacity of passive film was enhanced. The impact of alloying elements on the passive film (SMSS) passivation capability was also discussed by XPS depth profiling, and XPS depth profiling showed that the composition of the passive film was mainly composed of Fe-oxide and Cr-oxide. So the passive film structures were mixed layers of Fe-oxide and Cr-oxide. Fe oxidation product and Cr oxidation product would help to improve the protective property of passive film, which could promote the formation of a passive film structure more stably and densely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kocijan, C. Donik, M. Jenko, Corros. Sci. 49 (2007) 2083–2098.

    Article  Google Scholar 

  2. M. F. Montemor, M. G. S. Ferreira, N. E. Hakiki, Corros. Sci. 42 (2000) 1635–1650.

    Article  Google Scholar 

  3. S. Mischler, A. Vogel, H. J. Mathieu, D. Landolt, Corros. Sci. 32 (1991) 925–944.

    Article  Google Scholar 

  4. M. Sánchez, H. Mahmoud, J. Solid State Electr. 16 (2012) 1193–1202.

    Article  Google Scholar 

  5. D. N. Zou, R. Liu, J. Li, W. Zhang, D. Wang, Y. Han, J. Iron Steel Res. Int. 21 (2014) No. 6, 630–636.

    Article  Google Scholar 

  6. X. C. Han, J. Li, K. Y. Zhao, W. Zhang, J. Su, J. Iron Steel Res. Int. 20 (2013) No. 5, 74–79.

    Article  Google Scholar 

  7. C. O. A. Olsson, D. Landolt, Electrochim. Acta 48 (2003) 1093–1104.

    Article  Google Scholar 

  8. S. Y. Kim, H. Kim, H. S. Kwan, Mater. Corros. 57 (2006) 835–842.

    Article  Google Scholar 

  9. S. Haupt, H. H. Strehblow, Corros. Sci. 37 (1995) 43–54.

    Article  Google Scholar 

  10. H. W. Hoppe, S. Haupt, H. H. Strehblow, Surf. Interface Anal. 21 (1994) 514–525.

    Article  Google Scholar 

  11. Z. Petrovic, N. Lajçi, M. Metikoš-Hukovic, R. Babic, J. Solid State Electr. 15 (2010) 1201–1207.

    Article  Google Scholar 

  12. J. Ding, L. Zhang, M. Lu, J. Wang, Z. Wen, W. Hao, Appl. Surf. Sci. 289 (2014) 33–41.

    Article  Google Scholar 

  13. A. Davoodi, M. Pakshir, M. Babaiee, G. R. Ebrahimi, Corros. Sci. 53 (2011) 399–408.

    Article  Google Scholar 

  14. E. James, Concrete Eng. Int. 6 (2002) 64–67.

    Google Scholar 

  15. D. V. Val, M. G. Stewart, Struct. Saf. 25 (2003) 343–362.

    Article  Google Scholar 

  16. K. M. Kim, K. Y. Kim, J. Power Sources 173 (2007) 917–924.

    Article  Google Scholar 

  17. W. Jiang, K. Y. Zhao, D. Ye, J. Li, Z. D. Li, J. Su, J. Iron Steel Res. Int. 20 (2013) No. 5, 61–65.

    Article  Google Scholar 

  18. D. Ye, J. Li, W. Jiang, J. Su, K. Zhao, Mater. Des. 41 (2012) 16–22.

    Article  Google Scholar 

  19. Y. R. Liu, D. Ye, Q. L. Yong, J. Su, K. Y. Zhao, W. Jiang, J. Iron Steel Res. Int. 18 (2011) No. 11, 60–66.

    Article  Google Scholar 

  20. Y. F. Chen, J. L. Luo, Electrochim. Acta 44 (1999) 2947–2957.

    Article  Google Scholar 

  21. A. Saatchi, M. A. Golozar, K. Raeissi, J. Appl. Electrochem. 40 (2010) 457–461.

    Article  Google Scholar 

  22. R. S. Lillard, G. S. Kanner, L. L. Daemen, Electrochim. Acta 47 (2002) 2473–2482.

    Article  Google Scholar 

  23. C. Boissy, C. A. Dumont, B. Normand, Electrochem. Commun. 26 (2013) 10–12.

    Article  Google Scholar 

  24. A. A. Hermas, M. S. Morad, Corros. Sci. 50 (2008) 2710–2717.

    Article  Google Scholar 

  25. B. Guitián, X. R. Nóvoa, B. Puga, Electrochim. Acta. 56 (2011) 7772–7779.

    Article  Google Scholar 

  26. H. Luo, C. F. Dong, K. Xiao, X. G. Li, Appl. Surf. Sci. 258 (2011) 631–639.

    Article  Google Scholar 

  27. V. Guiñón-Pina, A. Igual-Muñoz, J. García-Antón, Corros. Sci. 53 (2011) 575–581.

    Article  Google Scholar 

  28. A. Kocijan, D. K. Merl, M. Jenko, Corros. Sci. 53 (2011) 776–783.

    Article  Google Scholar 

  29. R. A. Antunes, M. C. L. Oliveira, G. Ett, V. Ett, Int. J. Energ. Res. 36 (2011) 12474–12485.

    Google Scholar 

  30. A. Popova, E. Sokolova, S. Raicheva, M. Christov, Corros. Sci. 45 (2003) 33–58.

    Article  Google Scholar 

  31. A. K. Iversen, Corros. Sci. 48 (2006) 1036–1058.

    Article  Google Scholar 

  32. Z. J. Zheng, Y. Gao, Y. Gui, M. Zhu, J. Solid State Electr. 18 (2014) 2201–2210.

    Article  Google Scholar 

  33. L. A. S. Ries, M. Da Cunha Belo, M. G. S. Ferreira, L. L. Muller, Corros. Sci. 50 (2008) 676–686.

    Article  Google Scholar 

  34. C. Hitz, A. Lasia, J. Electroanal. Chem. 500 (2001) 213–222.

    Article  Google Scholar 

  35. C. F. Chen, R. J. Jiang, J. S. Qian, S. Q. Zheng, Acta Phys. Chim. Sin. 25 (2009) 1213–1218.

    Google Scholar 

  36. A. Gebert, K. Buchholz, A. Leonhard, K. Mummert, J. Eckert, L. Schultz, Mater. Sci. Eng. A 267 (1999) 294–300.

    Article  Google Scholar 

  37. M. J. Carmezim, A. M. Simões, M. F. Montemor, M. Da Cunha Belo, Corros. Sci. 47 (2005) 581–591.

    Article  Google Scholar 

  38. S. Nagarajan, N. Rajendran, Corros. Sci. 51 (2009) 217–224.

    Article  Google Scholar 

  39. Y. H. Lin, R. G. Du, R. G. Hu, C. J. Lin, Acta Phys. Chim. Sin. 21 (2005) 740–745.

    Google Scholar 

  40. A. Irhzo, Y. Segui, N. Bui, F. Dabosi, Corros. Sci. 26 (1986) 769–780.

    Article  Google Scholar 

  41. J. S. Kim, P. J. Xiang, K. Y. Kim, Corrosion 61 (2005) 174–183.

    Article  Google Scholar 

  42. K. M. Kim, J. H. Kim, K. Y. Kim, ECS Trans. 25 (2009) 1823–1832.

    Article  Google Scholar 

  43. K. H. Lo, C. H. Shek, J. K. L. Lai, Mater. Sci. Eng. R 65 (2009) 39–104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Additional information

Foundation Item: Item Sponsored by Education Department Scientific Research Fund Project from Yunnan Province of China (2012Y544)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Li, J., Zhao, Ky. et al. Passivation Behaviors of Super Martensitic Stainless Steel in Weak Acidic and Weak Alkaline NaCl Solutions. J. Iron Steel Res. Int. 22, 1156–1163 (2015). https://doi.org/10.1016/S1006-706X(15)30127-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(15)30127-8

Key words

Navigation