Skip to main content
Log in

DEM Simulation of Solid Flow Including Asymmetric Phenomena in COREX Shaft Furnace

  • Metallurgy and Metal Working
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Based on the principles of the discrete element method (DEM), a scaled-down model was established to analyze burden descending behavior, including asymmetric phenomena, throughout an entire COREX shaft furnace (SF). The applicability of the DEM model was validated by determining its accordance with a previous experiment. The effects of discharge rate and abnormal conditions on solid flow were described in terms of solid flow pattern and microscopic analysis. Results confirmed that the solid flow of the COREX SF can be divided into four different flow regions; the largest normal force exists at the top of the man-made dead zone, and the weak force network exists in the funnel flow region. The basic solid flow profile was identified as a clear Flat→U→W type. Increasing the discharge rate decreased the quasi-stagnant zone size, but did not affect the macroscopic motion of particles or the shape of patterns above the bustle. For asymmetric conditions, in which particles were discharged at different rates, the solid flow patterns were asymmetric. Under an abnormal condition where no particles were discharged from the left outlet, a sizeable stagnant zone was formed opposite to the working outlet, and “motionless” particles located in the left stagnant zone showed potential to increase the period of static contacts and sticking effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. S. Zhou, Iron and Steel 40 (2005) No. 11, 1–8.

    Google Scholar 

  2. Y. X. Qu, Y. X. Yang, Z. S. Zou, C. Zeilstra, K. Meijer, R. Boom, ISIJ Int. 54 (2014) 2196–2205.

    Article  Google Scholar 

  3. B. Anameric, S. K. Kawatra, Miner. Process. Extr. Metall. 30 (2008) 1–51.

    Article  Google Scholar 

  4. N. Wang, X. M. Xie, Z. S. Zou, L. Guo, W. R. Xu, Y. S. Zhou, Steel Res. Int. 79 (2008) 547–552.

    Article  Google Scholar 

  5. Y. X. Qu, Z. S. Zou, Y. P. Xiao, ISIJ Int. 52 (2012) 2186–2193.

    Article  Google Scholar 

  6. H. F. Li, Z. G. Luo, Z. S. Zou, J. J. Sun, L. H. Han, Z. X. Di, J. Iron Steel Res. Int. 19 (2012) No. 9, 36–42.

    Article  Google Scholar 

  7. J. J. Sun, Z. G. Luo, Z. S. Zou, Powder Technol. 281 (2015) 159–166.

    Article  Google Scholar 

  8. L. H. Han, Z. G. Luo, X. L. Zhou, H. Zhou, Z. S. Zou, Y. Z. Zhang, J. Iron Steel Res. Int. 20 (2013) No. 3, 30–35.

    Article  Google Scholar 

  9. Q. Li, M. X. Feng, Z. S. Zou, ISIJ Int. 53 (2013) 1365–1371.

    Article  Google Scholar 

  10. L. H. Han, Z. G. Luo, H. Zhou, Z. S. Zou, Y. Z. Zhang, J. Iron Steel Res. Int. 22 (2015) No. 4, 304–310.

    Article  Google Scholar 

  11. Y. J. Lee, Powder Technol. 102 (1999) 194–201.

    Article  Google Scholar 

  12. H. Zhou, Z. S. Zou, Z. G. Luo, T. Zhang, Y. You, H. F. Li, Ironmak. Steelmak. 42 (2015) 209–216.

    Article  Google Scholar 

  13. M. Y. Kou, S. L. Wu, W. Shen, K. P. Du, L. H. Zhang, J. Sun, ISIJ Int. 53 (2013) 2080–2089.

    Article  Google Scholar 

  14. Q. F. Hou, M. Samman, J. Li, A. B. Yu, ISIJ Int. 54 (2014) 1772–1780.

    Article  Google Scholar 

  15. P. A. Cundall, O. D. L. Strack, Geotechnique 29 (1979) 47–65.

    Article  Google Scholar 

  16. H. P. Zhu, Z. Y. Zhou, R. Y. Yang, A. B. Yu, Chem. Eng. Sci. 62 (2007) 3378–3396.

    Article  Google Scholar 

  17. H. P. Zhu, Z. Y. Zhou, R. Y. Yang, A. B. Yu, Chem. Eng. Sci. 63 (2008) 5728–5770.

    Article  Google Scholar 

  18. H. Takahashi, N. Komatsu, ISIJ Int. 33 (1993) 655–663.

    Article  Google Scholar 

  19. B. Wright, P. Zulli, Z. Y. Zhou, A. B. Yu, Powder Technol. 208 (2011) 86–97.

    Article  Google Scholar 

  20. Z. Y. Zhou, H. P. Zhu, B. Wright, A. B. Yu, P. Zulli, Powder Technol. 208 (2011) 72–85.

    Article  Google Scholar 

  21. M. Shimizu, Y. Kimura, M. Isobe, C. R. Che, S. Inaba, Tetsu-to-Hagane 73 (1987) 194–201.

    Article  Google Scholar 

  22. S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue, T. Ariyama, Steel Res. Int. 82 (2011) 964–971.

    Article  Google Scholar 

  23. W. G. Li, Baosteel Technology (2008) No. 6, 11–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-guo Luo.

Additional information

Foundation Item: Item Sponsored by National Key Technology Research and Development Program during 12th Five-year Plan of China (2011BAE04B02); National Natural Science Foundation of China (51174053)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Zg., Zhou, H., Zhang, T. et al. DEM Simulation of Solid Flow Including Asymmetric Phenomena in COREX Shaft Furnace. J. Iron Steel Res. Int. 22, 1098–1106 (2015). https://doi.org/10.1016/S1006-706X(15)30118-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(15)30118-7

Key words

Navigation